CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved water oxidation via Fe doping of CuWO4 photoanodes: Influence of the Fe source and concentration |
Yue Sun(孙岳)1, Fenqi Du(杜粉琦)1, Donghang Xie(谢东航)1, Dongmei Yang(杨冬梅)1, Yang Jiao(焦阳)1, Lichao Jia(贾丽超)2,†, and Haibo Fan(范海波)1,‡ |
1 School of Physics, Northwest University, Xi'an 710069, China; 2 School of Material Science and Engineering, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract Iron (Fe) was successfully doped in CuWO4 photoanode films with a combined liquid-phase spin-coating method via the dopant sources of Fe(NO3)3, FeSO4 and FeCl3. The microstructure of the prepared films was characterized by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The light absorption and photoelectric conversion properties were evaluated by the UV-visible absorption spectra and monochromatic incident photon-to-electron conversion efficiency. The chemical composition and element combination of the samples were examined by x-ray photoelectron spectroscopy. A linear sweep voltammetric and stability test (I-t) were performed with an electrochemical workstation. The results show that the samples are uniform with a thickness of approximately 800 nm and that the photoelectrochemical performance of the doped films is heavily dependent on the Fe source and dopant concentration. Upon optimizing the doping conditions of Fe(NO3)3 and the optimal source, the photocurrent density in the Fe-doped CuWO4 photoanode film is improved by 78% from 0.267 mA/cm2 to 0.476 mA/cm2 at 1.23 V vs reversible hydrogen electrode. The underlying causes are discussed.
|
Received: 27 May 2020
Revised: 16 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
78.40.Fy
|
(Semiconductors)
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204238) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM1030). |
Corresponding Authors:
†Corresponding author. E-mail: lichaojia@snnu.edu.cn ‡Corresponding author. E-mail: hbfan@nwu.edu.cn
|
Cite this article:
Yue Sun(孙岳), Fenqi Du(杜粉琦), Donghang Xie(谢东航), Dongmei Yang(杨冬梅), Yang Jiao(焦阳), Lichao Jia(贾丽超), and Haibo Fan(范海波) Improved water oxidation via Fe doping of CuWO4 photoanodes: Influence of the Fe source and concentration 2020 Chin. Phys. B 29 127801
|
[1] Maeda K and Domen K J. Phys. Chem. Lett. 1 2655 DOI: 10.1021/jz10079662010 [2] Nozik A J Ann. Rev. Phys. Chem. 29 189 DOI: 10.1146/annurev.pc.29.100178.0012011978 [3] Zhang P, Zhang J and Gong J Chem. Soc. Rev. 43 4395 DOI: 10.1039/C3CS60438A2014 [4] He Y, Sutton N B, Rijnaarts H H M and Langenhoff A A M Appl. Catalysis B 189 283 DOI: 10.1016/j.apcatb.2016.02.0272016 [5] Zheng L, Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q and Wei K Chempluschem 77 217 DOI: 10.1002/cplu.v77.32012 [6] Lhermitte C R and Bartlett B M Acc. Chem. Res. 49 1121 DOI: 10.1021/acs.accounts.6b000452016 [7] Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, Martinez-Garcia D and Segura A Europhys. Lett. 83 37002 DOI: 10.1209/0295-5075/83/370022008 [8] Ho Viet T, Albanese E and Pacchioni G J. Phys.: Condens. Matter 31 145503 DOI: 10.1088/1361-648X/aaff3e2019 [9] Yourey J E, Kurtz J B and Bartlett B M J. Phys. Chem. C 116 3200 DOI: 10.1021/jp211409x2012 [10] Chen S, Hossain M N and Chen A ChemElectroChem 5 523 DOI: 10.1002/celc.2017009912018 [11] Zhang H, Yilmaz P, Ansari J O, Khan F F, Binions R, Krause S and Dunn S J. Mater. Chem. A 3 9638 DOI: 10.1039/C4TA07213H2015 [12] Pilli S K, Deutsch T G, Furtak T E, Brown L D, Turner J A and Herring A M Phys. Chem. Chem. Phys. 15 3273 DOI: 10.1039/c2cp44577h2013 [13] Ye W, Chen F, Zhao F, Han N and Li Y ACS Appl. Mater. Interfaces 8 9211 DOI: 10.1021/acsami.6b031762016 [14] Dashtian K, Ghaedi M, Shirinzadeh H, Hajati S and Shahbazi S Chem. Eng. J. 339 189 DOI: 10.1016/j.cej.2018.01.1072018 [15] Liu Z, Song Q, Zhou M, Guo Z, Kang J and Yan H Chem. Engin. J. 374 554 DOI: 10.1016/j.cej.2019.05.1912019 [16] Hu D, Diao P, Xu D, Xia M, Gu Y, Wu Q, Li C and Yang S Nanoscale 8 5892 DOI: 10.1039/C5NR09210H2016 [17] Gao Y and Hamann T W J. Phys. Chem. Lett. 8 2700 DOI: 10.1021/acs.jpclett.7b006642017 [18] Bohra D and Smith W A Phys. Chem. Chem. Phys. 17 9857 DOI: 10.1039/C4CP05565A2015 [19] Li C and Diao P Electrochim. Acta 352 136471 DOI: 10.1016/j.electacta.2020.1364712020 [20] Yang J, Li C and Diao P Electrochimica Acta 308 195 DOI: 10.1016/j.electacta.2019.04.0442019 [21] Tri N L M, Trung D Q, Thuan D V, Dieu Cam N T D, Al Tahtamouni T, Pham T D, Duc D S, Thanh M H T, Ha H V, Thu N H A and Trang H T Int. J. Hydrogen Energy 45 18186 DOI: 10.1016/j.ijhydene.2019.06.1322019 [22] Scherrer P Göttinger Nachrichten Math. Phys. 1918 98 https://eudml.org/doc/590181918 [23] Girtan M and Folcher G Surf. Coat. Technol. 172 242 DOI: 10.1016/S0257-8972(03)00334-72003 [24] Abdi F F and Krol F V D J. Phys. Chem. C 116 9398 DOI: 10.1021/jp30075522012 [25] Jakhmola P, Jha P K and Bhatnagar S P Appl. Nanosci. 6 673 DOI: 10.1007/s13204-015-0466-y2016 [26] Khyzhun O Y, Bekenev V L and Solonin Y M J. Alloys Compounds 480 184 DOI: 10.1016/j.jallcom.2009.01.1192009 [27] Lalic M V, Popovic Z S and Vukajlovic F R Comput. Mater. Sci. 63 163 DOI: 10.1016/j.commatsci.2012.05.0742012 [28] Ruiz-Fuertes J, Errandonea D, Segura A, Manjon F J, Zhu Z and Tu C Y High Press. Res. 28 565 DOI: 10.1080/089579508024466432008 [29] Yourey J E and Bartlett B M J. Mater. Chem. 21 7651 DOI: 10.1039/c1jm11259g2011 [30] Gaillard N, Chang Y, DeAngelis A, Higgins S and Braun A Int. J. Hydrogen Energy 38 3166 DOI: 10.1016/j.ijhydene.2012.12.1042013 [31] Doumerc J P, Hejtmanek J, Chaminade J P, Pouchard M and Krussanova M Phys. Status Solidi A 82 285 DOI: 10.1002/(ISSN)1521-396X1984 [32] Novakov T Phys. Rev. B 3 2693 DOI: 10.1103/PhysRevB.3.26931971 [33] Penner S, Liu X, Kloetzer B, Klauser F, Jenewein B and Bertel E Thin Solid Films 516 2829 DOI: 10.1016/j.tsf.2007.05.0412008 [34] Khyzhun O Y, Strunskus T, Cramm S and Solonin Y M J. Alloys and Compounds 389 14 DOI: 10.1016/j.jallcom.2004.08.0132005 [35] Chen H and Xu Y RSC Adv. 5 8108 DOI: 10.1039/C4RA13952F2015 [36] Zhang Y, Du G, Wang X, Li W, Yang X, Ma Y, Zhao B, Yang H, Liu D and Yang S J. Cryst. Growth 252 180 DOI: 10.1016/S0022-0248(02)02481-82003 [37] Izato Y I, Kajiyama K and Miyake A Sci. Technol. Energ. Mater. 75 128 https://www.researchgate.net/publication/286407726ThermaldecompositionmechanismofammoniumnitrateandcopperIIoxidemixtures2014 [38] Olszak-Humienik M Thermochim. Acta 378 107 DOI: 10.1016/S0040-6031(01)00585-82001 [39] Bokhimi X, Morales A, Ortiz E, Lopez T, Gomez R and Navarrete J J. Sol-Gel Sci. Technol. 29 31 DOI: 10.1023/B:JSST.0000016135.02238.0e2004 [40] Rabex J F, linden L A, Kaczmarek H, Qu B J and Shi W F Ploymer Degradation and Stability 37 33 DOI: 10.1016/0141-3910(92)90089-N1992 [41] Liu J, Zhang W, Liang C and Sun Z J. University of Jinan 24 135 DOI: 10.3969/j.issn.1671-3559.2010.02.0072010 [42] Zhou G, Liu S and Peng D Chin. J. Chem. Phys. 9 54 DOI: 10.1007/BF020095481996 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|