Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Review of improved spectral response of ultraviolet photodetectors by surface plasmon |
You Wu(吴忧)1,2, Xiao-Juan Sun(孙晓娟)1, Yu-Ping Jia(贾玉萍)1, Da-Bing Li(黎大兵)1 |
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Ultraviolet (UV) photodetectors based on wide band gap semiconductor have attracted much attention for their small volume, low working voltage, long lifetime, good chemical and thermal stability. Up to now, many researches have been done on the semiconductors based UV detectors and some kinds of detectors have been made, such as metal-semiconductor-metal (MSM), Schottky, and PIN-type detectors. However, the sensitivity values of those detectors are still far from the expectation. Recent years, surface plasmon (SP) has been considered to be an effective way to enhance the sensitivity of semiconductor based UV photodetector. When the light is matched with the resonance frequency of surface plasmon, the localized field enhancement or scattering effect will happen and thus the spectral response will be enhanced. Here, we present an overview of surface plasmon enhancing the performance of UV detectors, including the GaN, ZnO, and other wide band gap semiconductor UV detectors. Both fundamental and experimental achievements are contained in this review.
|
Received: 27 August 2018
Revised: 25 September 2018
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400904), the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 61725403), the National Natural Science Foundation of China (Grant Nos. 61574142, 61322406, 61704171, and 11705206), the Key Program of International Partnership Program of the Chinese Academy of Sciences (Grant No. 181722KYSB20160015), the Special Project for Inter-government Collaboration of State Key Research and Development Program, China (Grant No. 2016YFE0118400), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Jilin Provincial Science & Technology Department, China (Grant No. 20180201026GX), the Interdisciplinary Innovation Team of the Chinese Academy of Sciences, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015171). |
Corresponding Authors:
Xiao-Juan Sun, Da-Bing Li
E-mail: sunxj@ciomp.ac.cn;lidb@ciomp.ac.cn
|
Cite this article:
You Wu(吴忧), Xiao-Juan Sun(孙晓娟), Yu-Ping Jia(贾玉萍), Da-Bing Li(黎大兵) Review of improved spectral response of ultraviolet photodetectors by surface plasmon 2018 Chin. Phys. B 27 126101
|
[1] |
Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
|
[2] |
Razeghi M 2002 Proc. IEEE 90 1006
|
[3] |
Muñoz E 2007 Phys. Stat. Sol. (b) 244 2859
|
[4] |
Sajjad M, Jadwisienczak W M and Feng P 2014 Nanoscale 6 4577
|
[5] |
Atalla M, Jiang Z Y, Liu J, Wang L, Ashok S and Xu J 2015 J. Appl. Phys. 117 134503
|
[6] |
Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez F J, Diaz J and Razeghi M 1999 Appl. Phys. Lett. 74 762
|
[7] |
Butun B, Tut T, Ulker E, Yelboga T and Ozbay E 2008 Appl. Phys. Lett. 92 033507
|
[8] |
Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photon. 10 43
|
[9] |
Stockman M I 2011 Phys. Today 64 39
|
[10] |
Wood R W 1902 Proc. Phys. Soc. London 18 269
|
[11] |
Folge V 1904 Ann. Phys. 318 857
|
[12] |
Fano U 1941 JOSA 31 213
|
[13] |
Pines D 1956 Rev. Mod. Phys. 28 184
|
[14] |
Ritchie R H 1957 Phys. Rev. 106 874
|
[15] |
Butun S, Cinel N A and Ozbay E 2012 Nanotechnology 23 444010
|
[16] |
Cho C Y, Zhang Y J, Cicek E, Rahnema B, Bai Y B, McClintock R and Razeghi M 2013 Appl. Phys. Lett. 102 211110
|
[17] |
Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
|
[18] |
Clavero C 2014 Nat. Photon. 8 95
|
[19] |
Beck F J, Polman A and Catchpole K R 2009 J. Appl. Phys. 105 114310
|
[20] |
Homola J 2008 Chem. Rev. 108 462
|
[21] |
Bri, V A, Thilakarathne V, Kasi R M and Kumar C V 2012 Talanta 99 113
|
[22] |
Cho C Y, Lee S J, Song J H, Hong S H, Lee S M, Cho Y H and Park S J 2011 Appl. Phys. Lett. 98 051106
|
[23] |
Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
|
[24] |
Derkacs D, Lim S H, Matheu P, Mar W and Yu E T 2006 Appl. Phys. Lett. 89 093103
|
[25] |
Ye W, Zhang W, Wang S, Qi Z Q, Luo Z W, Chen C Q and Dai J N 2017 Opt. Commun. 395 175
|
[26] |
Li Y, Liu B, Zhang R, Xie Z L, Zhuang Z, Dai J P, Tao T, Zhi T, Zhang G G, Chen P, Ren F F, Zhao H and Zheng Y D 2015 J. Appl. Phys. 117 153103
|
[27] |
Shim J P, Choi S B, Kong D J, Seo D J, Kim H J and Lee D S 2016 Opt. Express 24 A1176
|
[28] |
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nat. Mater. 3 601
|
[29] |
Lai C W, An J and Ong H C 2005 Appl. Phys. Lett. 86 251105
|
[30] |
Li D B, Sun X J, Song H, Li Z M, Chen Y R, Jiang H and Miao G Q 2012 Adv. Mater. 24 845
|
[31] |
Zhang W, Xu J, Ye W, Li Y, Qi Z Q, Dai J N, Wu Z H, Chen C Q, Yin J, Li J, Jiang H and Fang Y Y 2015 Appl. Phys. Lett. 106 021112
|
[32] |
Gao N, Huang K, Li J C, Li S P, Yang X and Junyong Kang 2012 Sci. Rep. 2 816
|
[33] |
Zhang C, Tang N, Shang L L, Fu L, Wang W Y, Xu F J, Wang X Q, Ge W K and Shen B 2017 Sci. Rep. 7 2358
|
[34] |
Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
|
[35] |
Gérard D and Gray S K 2015 J. Phys. D: Appl. Phys. 48 184001
|
[36] |
Jiao X J and Blair S 2012 Opt. Express 20 29909
|
[37] |
Murray A W and Barnes W L 2007 Adv. Mater. 19 3771
|
[38] |
Knight M W, King N S, Liu L F, Everitt H O, Nordlander P and Halas N J 2014 ACS Nano 8 834
|
[39] |
Kwon M K, Kim J Y, Kim B H, Park I K, Cho C Y, Byeon C C and Park S J 2008 Adv. Mater. 20 1253
|
[40] |
Pryce I M, Koleske D D, Fischer A J and Atwater H A 2010 Appl. Phys. Lett. 96 153501
|
[41] |
Li D B, Sun X J, Jia Y P, Stockman M I, Paudel H P, Song H, Jiang H and Li Z M 2017 Light: Sci. Appl. 6 e17038
|
[42] |
Liu X T, Li D B, Sun X J, Li Z M, Song H, Jiang H and Chen Y R 2015 Sci. Rep. 5 12555
|
[43] |
Kumar M, Kojori H S, Kim S J, Park H H, Kim J and Yun J H 2016 J. Photon. Energy 6 042508
|
[44] |
Wang X, Liu K W, Chen X, Li B H, Jiang M M, Zhang Z Z, Zhao H F and She D S 2017 ACS Appl. Mater. Interfaces 9 5574
|
[45] |
Li G M, Song J D, Zhang J W and Hou X 2014 Solid-State Electron. 92 47
|
[46] |
Li G M, Zhang J W, Chen G D, Ye H G, Duan X Y and Hou X 2016 Solid-State Electron. 123 33
|
[47] |
Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
|
[48] |
Villesen T F, Uhrenfeldt C, Johansen B and Larsen A N 2013 Nanotechnology 24 275606
|
[49] |
Martin J, Proust J, Gérard D and Plain J 2013 Opt. Mater. Express 3 954
|
[50] |
Bao G H, Li D B, Sun X J, Jiang M M, Li Z M, Song H, Jiang H, Chen Y R, Miao G Q and Zhang Z W 2014 Opt. Express 22 24286
|
[51] |
Lecarme O, Sun Q, Ueno K and Misawa H 2014 ACS Photon. 1 538
|
[52] |
Lérondel G, Kostcheev S and Plain J 2012 Nanofabrication for Plasmonics Plasmonics: from Basics to Advanced Topics (Berlin, Springer-Verlag Berlin) pp. 269-316
|
[53] |
Chan G H, Zhao J, Schatz G C and Van Duyne R P 2008 J. Phys. Chem. C 112 13958
|
[54] |
Honda M, Kumamoto Y, Taguchi A, Saito Y and Kawata S 2014 Appl. Phys. Lett. 104 061108
|
[55] |
Mak G Y, Fu W Y, Lam E Y and Choi H W 2009 Phys. Status Solidi C 6 S654
|
[56] |
Hulteen J C and Van Duyne P 1995 J. Vac. Sci. Technol. A 13 1553
|
[57] |
Taguchi A, Saito Y, Watanabe K, Yijian S and Kawata S 2012 Appl. Phys. Lett. 101 081110
|
[58] |
Shi X Q, Yang Z M, Yin S C and Zeng H B 2016 Mater. Technol.: Advanced Performance Mater. 31 544
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|