Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028101    DOI: 10.1088/1674-1056/ac6b2b

Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si

Zhen-Zhuo Zhang(张臻琢)1,2, Jing Yang(杨静)1,†, De-Gang Zhao(赵德刚)1,3,‡, Feng Liang(梁锋)1, Ping Chen(陈平)1, and Zong-Shun Liu(刘宗顺)1
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  GaN films grown on (111) Si substrate with different lattice parameters of the AlN buffer layer by metal-organic chemical vapor deposition are studied. The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth. A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film. The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer. This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
Keywords:  GaN      Si substrate      AlN buffer layer      stress control  
Received:  15 March 2022      Revised:  07 April 2022      Accepted manuscript online:  28 April 2022
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant Nos. Z211100007921022 and Z211100004821001), the National Natural Science Foundation of China (Grant Nos. 62034008, 62074142, 62074140, 61974162, 61904172, 61874175, 62127807, and U21B2061), Key Research and Development Program of Jiangsu Province (Grant No. BE2021008-1), Beijing Nova Program (Grant No. 202093), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43030101), and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019115).
Corresponding Authors:  Jing Yang, De-Gang Zhao     E-mail:;

Cite this article: 

Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺) Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si 2023 Chin. Phys. B 32 028101

[1] Rathkanthiwar S, Kalra A, Remesh N, Bardhan A, Muralidharan R, Nath D N and Raghavan S 2020 J. Appl. Phys. 21 127
[2] Wang Z, Shan X, Cui X and Tian P 2020 J. Semicond. 41 041606
[3] Zhao D G 2019 J. Semicond. 40 120402
[4] Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501
[5] Dadgar A 2015 Phys. Status Solidi B 252 1063
[6] Yu X, Ni J, Li Z, Zhou J and Kong C 2014 Jpn. J. Appl. Phys. 53 051001
[7] Suzuki M, Nakamura A, Nakano Y and Sugiyama M 2017 J. Cryst. Growth 464 148
[8] Pan L, Dong X, Ni J, Li Z, Yang Q, Peng D and Li C 2016 Phys. Status Solidi C 13 181
[9] Cheng J, Yang X, Sang L, Guo L, Zhang J, Wang J, He C, Zhang L, Wang M, Xu F, Tang N, Qin Z, Wang X and Shen B 2016 Sci. Rep. 6 1
[10] Raghavan S, Weng X, Dickey E and Redwing J M 2006 Appl. Phys. Lett. 88 041904
[11] Semond F 2015 MRS Bull. 40 412
[12] Lin K L, Chang E Y, Hsiao Y L, Huang W C, Li T, Tweet D, Maa J S, Hsu S T and Lee C T 2007 Appl. Phys. Lett. 91 222111
[13] Raghavan S, Weng X, Dickey E and Redwing J M 2005 Appl. Phys. Lett. 87 142101
[14] Raghavan S and Redwing J M 2005 J. Appl. Phys. 98 023514
[15] Dai Y, Li S, Sun Q, Peng Q, Gui C, Zhou Y and Liu S 2016 J. Cryst. Growth 435 76
[16] Li Y, Wang W, Li X, Huang L, Zheng Y, Chen X and Li G 2018 Crystengcomm 20 1483
[17] Lee J H and Im K S 2021 Crystals 11 234
[18] Zhen L, Peng P, Qiu C, Zheng B, Armaou A and Zhong R 2020 Chin. J. Mater. Res. 34 744
[19] Lee S J, Jeon S R, Ju J W, Baek J H, Su J, Lee S M, Lee D S and Lee C R 2019 J. Nanosci. Nanotechnol. 19 892
[20] Liu B T, Ma P, Li X L, Wang J X and Li J M 2017 Chin. Phys. Lett. 34 058101
[21] Matsumoto K, Ono T, Honda Y, Murakami S, Kushimoto M and Amano H 2018 Jpn. J. Appl. Phys. 57 091001
[22] Kadir A, Srivastava S, Li Z, Lee K E K, Sasangka W A, Gradecak S, Chua S J and Fitzgerald E A 2018 Thin Solid Films 663 73
[23] Li Y F, Tang C W and Lau K M 2020 J. Cryst. Growth 535 125545
[24] Wei L, Yang X L, Shen J F, Liu D S, Cai Z D, Ma C, He X G, Tang J, Qi S L, Xu F J, Wang X Q, Ge W K and Shen B 2020 Appl. Phys. Lett. 116 232105
[25] Tran B T, Lin K L, Sahoo K C, Chung C C, Lang N C and Chang E Y 2014 Electron Mater. Lett. 10 1063
[26] Dadgar A, Poschenrieder M, Bläsing J, Contreras O, Bertram F, Riemann T, Reiher A, Kunze M, Daumiller I and Krtschil A 2003 J. Cryst. Growth 248 556
[27] Hopcroft M A, Nix W D and Kenny T W 2010 J. Microelectromech. Syst. 19 229
[28] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[29] Thokala R and Chaudhuri J 1995 Thin Solid Films 266 189
[30] Reeber R R and Wang K 2001 Mrs. Internet J. Nitride Semicond. Res. 6 3
[31] Liu J, Huang Y, Sun X, Zhan X, Sun Q, Gao H, Feng M, Zhou Y, Ikeda M and Yang H 2019 J. Phys. D-Appl. Phys. 52 425102
[32] Perlin P, Claude J C, Itie J P, Alfonso S M, Izabella G and Alain P 1992 Phys. Rev. B 45 83
[33] Zhao D M and Zhao D G 2018 J. Semicond. 39 033006
[34] Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899
[35] Zhao D G, Xu S J, Xie M H, Tong S Y and Yang H 2003 Appl. Phys. Lett. 83 677
[36] Gao H and Nix W D 1999 Annu. Rev. Mater. Sci. 29 173
[37] Gorshkov V N, Tershchuk V V and Sareh P 2021 Crystengcomm. 23 1836
[38] Andersen M and Ghoniem N M 2007 Fusion Sci. Technol. 52 579
[39] Grinfeld M 1993 J. Nonlinear Sci. 3 35
[1] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬)†. Chin. Phys. B, 2023, 32(4): 040701.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!