INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si |
Zhen-Zhuo Zhang(张臻琢)1,2, Jing Yang(杨静)1,†, De-Gang Zhao(赵德刚)1,3,‡, Feng Liang(梁锋)1, Ping Chen(陈平)1, and Zong-Shun Liu(刘宗顺)1 |
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract GaN films grown on (111) Si substrate with different lattice parameters of the AlN buffer layer by metal-organic chemical vapor deposition are studied. The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth. A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film. The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer. This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
|
Received: 15 March 2022
Revised: 07 April 2022
Accepted manuscript online: 28 April 2022
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant Nos. Z211100007921022 and Z211100004821001), the National Natural Science Foundation of China (Grant Nos. 62034008, 62074142, 62074140, 61974162, 61904172, 61874175, 62127807, and U21B2061), Key Research and Development Program of Jiangsu Province (Grant No. BE2021008-1), Beijing Nova Program (Grant No. 202093), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43030101), and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019115). |
Corresponding Authors:
Jing Yang, De-Gang Zhao
E-mail: yangjing333@semi.ac.cn;dgzhao@red.semi.ac.cn
|
Cite this article:
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺) Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si 2023 Chin. Phys. B 32 028101
|
[1] Rathkanthiwar S, Kalra A, Remesh N, Bardhan A, Muralidharan R, Nath D N and Raghavan S 2020 J. Appl. Phys. 21 127 [2] Wang Z, Shan X, Cui X and Tian P 2020 J. Semicond. 41 041606 [3] Zhao D G 2019 J. Semicond. 40 120402 [4] Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501 [5] Dadgar A 2015 Phys. Status Solidi B 252 1063 [6] Yu X, Ni J, Li Z, Zhou J and Kong C 2014 Jpn. J. Appl. Phys. 53 051001 [7] Suzuki M, Nakamura A, Nakano Y and Sugiyama M 2017 J. Cryst. Growth 464 148 [8] Pan L, Dong X, Ni J, Li Z, Yang Q, Peng D and Li C 2016 Phys. Status Solidi C 13 181 [9] Cheng J, Yang X, Sang L, Guo L, Zhang J, Wang J, He C, Zhang L, Wang M, Xu F, Tang N, Qin Z, Wang X and Shen B 2016 Sci. Rep. 6 1 [10] Raghavan S, Weng X, Dickey E and Redwing J M 2006 Appl. Phys. Lett. 88 041904 [11] Semond F 2015 MRS Bull. 40 412 [12] Lin K L, Chang E Y, Hsiao Y L, Huang W C, Li T, Tweet D, Maa J S, Hsu S T and Lee C T 2007 Appl. Phys. Lett. 91 222111 [13] Raghavan S, Weng X, Dickey E and Redwing J M 2005 Appl. Phys. Lett. 87 142101 [14] Raghavan S and Redwing J M 2005 J. Appl. Phys. 98 023514 [15] Dai Y, Li S, Sun Q, Peng Q, Gui C, Zhou Y and Liu S 2016 J. Cryst. Growth 435 76 [16] Li Y, Wang W, Li X, Huang L, Zheng Y, Chen X and Li G 2018 Crystengcomm 20 1483 [17] Lee J H and Im K S 2021 Crystals 11 234 [18] Zhen L, Peng P, Qiu C, Zheng B, Armaou A and Zhong R 2020 Chin. J. Mater. Res. 34 744 [19] Lee S J, Jeon S R, Ju J W, Baek J H, Su J, Lee S M, Lee D S and Lee C R 2019 J. Nanosci. Nanotechnol. 19 892 [20] Liu B T, Ma P, Li X L, Wang J X and Li J M 2017 Chin. Phys. Lett. 34 058101 [21] Matsumoto K, Ono T, Honda Y, Murakami S, Kushimoto M and Amano H 2018 Jpn. J. Appl. Phys. 57 091001 [22] Kadir A, Srivastava S, Li Z, Lee K E K, Sasangka W A, Gradecak S, Chua S J and Fitzgerald E A 2018 Thin Solid Films 663 73 [23] Li Y F, Tang C W and Lau K M 2020 J. Cryst. Growth 535 125545 [24] Wei L, Yang X L, Shen J F, Liu D S, Cai Z D, Ma C, He X G, Tang J, Qi S L, Xu F J, Wang X Q, Ge W K and Shen B 2020 Appl. Phys. Lett. 116 232105 [25] Tran B T, Lin K L, Sahoo K C, Chung C C, Lang N C and Chang E Y 2014 Electron Mater. Lett. 10 1063 [26] Dadgar A, Poschenrieder M, Bläsing J, Contreras O, Bertram F, Riemann T, Reiher A, Kunze M, Daumiller I and Krtschil A 2003 J. Cryst. Growth 248 556 [27] Hopcroft M A, Nix W D and Kenny T W 2010 J. Microelectromech. Syst. 19 229 [28] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [29] Thokala R and Chaudhuri J 1995 Thin Solid Films 266 189 [30] Reeber R R and Wang K 2001 Mrs. Internet J. Nitride Semicond. Res. 6 3 [31] Liu J, Huang Y, Sun X, Zhan X, Sun Q, Gao H, Feng M, Zhou Y, Ikeda M and Yang H 2019 J. Phys. D-Appl. Phys. 52 425102 [32] Perlin P, Claude J C, Itie J P, Alfonso S M, Izabella G and Alain P 1992 Phys. Rev. B 45 83 [33] Zhao D M and Zhao D G 2018 J. Semicond. 39 033006 [34] Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899 [35] Zhao D G, Xu S J, Xie M H, Tong S Y and Yang H 2003 Appl. Phys. Lett. 83 677 [36] Gao H and Nix W D 1999 Annu. Rev. Mater. Sci. 29 173 [37] Gorshkov V N, Tershchuk V V and Sareh P 2021 Crystengcomm. 23 1836 [38] Andersen M and Ghoniem N M 2007 Fusion Sci. Technol. 52 579 [39] Grinfeld M 1993 J. Nonlinear Sci. 3 35 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|