|
Abstract It is a great discovery in physics of the twentieth century that the elementary particles in nature are dictated by gauge forces, characterized by a nonintegrable phase factor that an elementary particle of charge $q$ acquires from $A$ to $B$ points: $P \exp \left( \text{i} \frac q {\hbar c}\int_A^B A_{\mu}\text{d} x^{\mu}\right),$ where $A_{\mu}$ is the gauge potential and $P$ stands for path ordering. In a many-body system of strongly correlated electrons, if the so-called Mott gap is opened up by interaction, the corresponding Hilbert space will be fundamentally changed. A novel nonintegrable phase factor known as phase-string will appear and replace the conventional Fermi statistics to dictate the low-lying physics. Protected by the Mott gap, which is clearly identified in the high-$T_{\rm c}$ cuprate with a magnitude $> 1.5$ eV, such a singular phase factor can enforce a fractionalization of the electrons, leading to a dual world of exotic elementary particles with a topological gauge structure. A non-Fermi-liquid "parent" state will emerge, in which the gapless Landau quasiparticle is only partially robust around the so-called Fermi arc regions, while the main dynamics are dominated by two types of gapped spinons. Antiferromagnetism, superconductivity, and a Fermi liquid with full Fermi surface can be regarded as the low-temperature instabilities of this new parent state. Both numerics and experiments provide direct evidence for such an emergent physics of the Mottness, which lies in the core of a high-$T_{\rm c}$ superconducting mechanism.
|
Received: 18 April 2022
Revised: 13 June 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
Fund: Stimulating discussions with Shuai Chen, Donna Sheng, Jan Zaanen, and Jia-Xin Zhang are acknowledged. A partial support of this work by the National Key R&D Program of China (Grant No. 2017YFA0302902) is also acknowledged. |
Corresponding Authors:
Zheng-Yu Weng
E-mail: weng@mail.tsinghua.edu.cn
|
Cite this article:
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇) Mottness, phase string, and high-Tc superconductivity 2022 Chin. Phys. B 31 087104
|
[1] Yang C N 1974 Phys. Rev. Lett. 33 445 [2] Wu T T and Yang C N 1975 Phys. Rev. D 12 3845 [3] Abrikosov A A, Gor'kov L P and Dzyaloshinskii E 1963 Method of Quantm Field Theory in Statistical Physics (Englewood Cliffs:Prentice-Hall) [4] Pines D and Nozieres P 1965 Theory of Quantum Liquids (New York:Benjamin) [5] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [6] Anderson P W 1987 Science 235 1196 [7] Anderson P W 1997 The Theory of Superconductivity in the High Tc Cuprates (Princeton:Princeton Univ. Press) [8] Ye C, Cai P, Yu R, Zhou X, Ruan W, Liu Q, Jin C and Wang Y 2013 Nat. Commun. 4 1365 [9] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [10] Weng Z Y 2007 Intl. J. Mod. Phys. B 21 773; arXiv:0704.2875 [11] Weng Z Y 2011 Front. Phys. 6 370; arXiv:1110.0546 [12] Zaanen J and Overbosch B J 2011 Phil. Trans. R. Soc. A 369 1599; arXiv:0911.4070 [13] Anderson P W, Lee P A, Randeria M, Rice T M, Trivedi N and Zhang F C 2004 J. Phys.:Condens. Matter 16 R755 and references therein [14] For a review, see, Edegger B, Muthukumar V N and Gros C 2007 Adv. Phys. 56 927 [15] Wen X G 2019 Science 363 eaal3099 [16] Sheng D N, Chen Y C and Weng Z Y 1996 Phys. Rev. Lett. 77 5102 [17] Wu K, Weng Z Y and Zaanen J 2008 Phys. Rev. B 77 155102 [18] Wu Y S 1984 Phys. Rev. Lett. 52 2103 [19] Zhang L and Weng Z Y 2014 Phys. Rev. B 90 165120 [20] Anderson P W 1990 Phys. Rev. Lett. 64 1839 [21] Anderson P W 1967 Phys. Rev. Lett. 18 1049 [22] Anderson P W 1967 Phys. Rev. 164 352 [23] Weng Z Y, Sheng D N, Chen Y C and Ting C S 1997 Phys. Rev. B 55 3894 [24] Weng Z Y, Sheng D N and Ting C S 1998 Phys. Rev. Lett. 80 5401 [25] Weng Z Y 2011 New J. Phys 13 103039 [26] Zhu Z, Jiang H C, Qi Y, Tian C and Weng Z Y 2013 Sci. Rep. 3 2586 [27] Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singapore:World Scientific Publishing) [28] Marshall W 1955 Proc. R. Soc. A 232 48 [29] Zheng W, Zhu Z, Sheng D N and Weng Z Y 2018 Phys. Rev. B 98 165102 [30] Zhu Z, Wang Q R, Sheng D N and Weng Z Y 2016 Nucl. Phys. B 903 51 [31] Zheng W and Weng Z Y 2018 Sci. Rep. 8 3612 [32] Zhu Z and Weng Z Y 2015 Phys. Rev. B 92 235156 [33] Zhu Z, Sheng D N and Weng Z Y 2018 Phys. Rev. B 98 035129 [34] Sun R Y, Zhu Z and Weng Z Y 2019 Phys. Rev. Lett. 123 016601 [35] He R Q and Weng Z Y 2016 Sci. Rep. 6 35208 [36] Zhu Z, Weng Z Y and Ho T L 2016 Phys. Rev. A 93 033614 [37] Shinjo K, Sota S and Tohyama T 2021 Phys. Rev. B 103 035141 [38] Zhu Z, Jiang H C, Sheng D N and Weng Z Y 2014 Sci. Rep. 4 5419 [39] Zhu Z, Sheng D N and Weng Z Y 2018 Phys. Rev. B 97 115144 [40] Jiang H C, Chen C and Weng Z Y 2020 Phys. Rev. B 102 104512 [41] Sun R Y, Zhu Z and Weng Z Y 2020 Phys. Rev. Res. 2 033007 [42] Jiang H C, Weng Z Y and Kivelson S A 2018 Phys. Rev. B 98 140505(R) [43] Jiang Y F, Zaanen J, Devereaux T P and Jiang H C 2020 Phys. Rev. Res. 2 033073 [44] Jiang S, Scalapino D J and White S R 2021 Proc. Natl. Acad. Sci. USA 118 e2109978118 [45] Zhang J X, et al., 2022 in preparation. [46] Ma Y, Ye P and Weng Z Y 2014 New J. Phys 16 083039 [47] Liang S, Doucot B and Anderson P W 1988 Phys. Rev. Lett. 61 365 [48] Wang Q R, Zhu Z, Qi Y and Weng Z Y 2015 arXiv:1509.01260 [49] Chen S, Wang Q R, Qi Y, Sheng D N and Weng Z Y 2019 Phys. Rev. B 99 205128 [50] Chen S A, Weng Z Y and Zaanen J 2022 Phys. Rev. B 105 075136 [51] Chen S, Zhu Z and Weng Z Y 2018 Phys. Rev. B 98 245138 [52] Zhao J Y, Chen S A, Zhang H K and Weng Z Y 2022 Phys. Rev. X 12 011062 [53] Note that here two twisted holes are defined by using the same sign of the phase-string factor in Eq. (21), a topological correction to the half-filling ground state should be included in|b-RVB> according to Ref.[52]. [54] Yang C N 1962 Rev. Mod. Phys. 34 694 [55] Kou S P, Qi X L and Weng Z Y 2005 Phys. Rev. B 71 235102 [56] Ye P, Tian C S, Qi X L and Weng Z Y 2011 Phys. Rev. Lett. 106 147002 [57] Ye P, Tian C S, Qi X L and Weng Z Y 2012 Nucl. Phys. B 854 815 [58] Zhang J H, Li S, Ma Y, Zhong Y, Ding H and Weng Z Y 2020 Phys. Rev. Res. 2 023398 [59] Mei J W and Weng Z Y 2010 Phys. Rev. B 81 014507 [60] Laughlin R B 1983 Phys. Rev. Lett. 50 1395 [61] Muthukumar V N and Weng Z Y 2002 Phys. Rev. B 65 174511 [62] Weng Z Y and Qi X L 2006 Phys. Rev. B 74 144518 [63] Qi X L and Weng Z Y 2007 Phys. Rev. B 76 104502 [64] Kou S P and Weng Z Y 2003 Phys. Rev. Lett. 90 157003 [65] Zhang J X, et al. 2022 in preparation [66] Gu Z C and Weng Z Y 2005 Phys. Rev. B 72 104520 [67] Anderson P W 1972 Science 177 393 [68] Laughlin R B and Pines D 2000 Proc. Natl. Acad. Sci. USA 97 28 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|