Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 016701    DOI: 10.1088/1674-1056/ac8a8e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation

Jian-Ying Yue(岳建英)1,2, Xue-Qiang Ji(季学强)1,2, Shan Li(李山)1,2, Xiao-Hui Qi(岐晓辉)1,2, Pei-Gang Li(李培刚)1,2,†, Zhen-Ping Wu(吴真平)1,2, and Wei-Hua Tang(唐为华)1,2,3,‡
1 Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 College of Electronic and Optical Engineering&College of Microelectronics, National and Local Joint Engineering Laboratory for RF Integration and Micro-Packaging Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Abstract  Solar-blind ultraviolet photodetectors with metal-semiconductor-metal structure were fabricated based on β -(Al0.25Ga0.75)2O3/β -Ga2O3 film grown by metal-organic chemical vapor deposition. It was known that various surface states increase dark current and a large number of defects can hinder the transport of carriers, resulting in low switching ratio and low responsivity of the device. In this work, β -(Al0.25Ga0.75)2O3 films are used as surface passivation materials. Owning to its wide band gap, we obtain excellent light transmission and high lattice matching with β -Ga2O3. We explore the change and mechanism of the detection performance of the β -Ga2O3 detector after β -(Al0.25Ga0.75)2O3 surface passivation. It is found that under the illumination with 254 nm light at bias 5 V, the β -(Al0.25Ga0.75)2O3/β -Ga2O3 photodetectors show dark current of just 18 pA and high current on/off ratio of 2.16×105. The dark current is sharply reduced about 50 times after passivation of the β -Ga2O3 surface, and current on/off ratio increases by approximately 2 times. It is obvious that β -Ga2O3 detectors with β -(Al0.25Ga0.75)2O3 surface passivation can offer superior detector performance.
Keywords:  β-(Al0.25Ga0.75)2O3/β-Ga2O3      MOCVD      photodetectors      defect passivation  
Received:  11 June 2022      Revised:  15 August 2022      Accepted manuscript online:  18 August 2022
PACS:  67.30.hr (Films)  
  71.20.Nr (Semiconductor compounds)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.65.Rv (Passivation)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 042600055) and Research on Frontiers of Materials Science, Beijing Municipal Science and Technology Commission (Grant No. Z181100004418006).
Corresponding Authors:  Pei-Gang Li, Wei-Hua Tang     E-mail:  pgli@bupt.edu.cn;whtang@njupt.edu.cn

Cite this article: 

Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华) Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation 2023 Chin. Phys. B 32 016701

[1] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[2] Yan Z Y, Li S, Liu Z, Liu W J, Qiao F, Li P G, Tang X, Li X H, Yue J Y, Guo Y F and Tang W H 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803208
[3] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201
[4] Wang X, Wu Z P, Cui W, Zhi Y S, Li Z P, Li P G, Guo D Y and Tang W H 2019 Chin. Phys. B 28 017305
[5] Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301
[6] Zhang F, Saito K, Tanaka T, Nishio M, Arita M and Guo Q 2014 Appl. Phys. Lett. 105 162107
[7] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B 30 017302
[8] Wu Y L, Weng W Y, Chang S J, Huang Z D and Chiu C J 2012 ECS Meet. Abstr. MA2012-01 1614
[9] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
[10] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lv H and Liu M 2019 IEEE Electron Device Lett. 40 1475
[11] Anhar Uddin Bhuiyan A F M, Feng Z, Johnson J M, Chen Z, Huang H L, Hwang J and Zhao H 2019 Appl. Phys. Lett. 115 120602
[12] Anhar Uddin Bhuiyan A F M, Feng Z, Johnson J M, Huang H L, Hwang J and Zhao H 2020 Cryst. Growth Des. 20 6722
[13] Zhang Y, Joishi C, Xia Z, Brenner M, Lodha S and Rajan S 2018 Appl. Phys. Lett. 112 233503
[14] Varley J B, Perron A, Lordi V, Wickramaratne D and Lyons J L 2020 Appl. Phys. Lett. 116 172104
[15] Zhang F, Hu C, Arita M, Saito K, Tanaka T and Guo Q 2020 AIP Adv. 10 065125
[16] Miller R, Alema F and Osinsky A 2018 IEEE Trans. Semicond. Manuf. 31 467
[17] Uchida T, Jinno R, Takemoto S, Kaneko K and Fujita S 2018 Jpn. J. Appl. Phys. 57 040314
[18] Ito H, Kaneko K and Fujita S 2012 Jpn. J. Appl. Phys. 51 053102
[19] Li S, Yue J, Ji X, Lu C, Yan Z, Li P, Guo D, Wu Z and Tang W 2021 J. Mater. Chem. C 9 5437
[20] Li S, Zhi Y, Lu C, Wu C, Yan Z, Liu Z, Yang J, Chu X, Guo D, Li P, Wu Z and Tang W 2021 J. Phys. Chem. Lett. 12 447
[21] Zhao Z, Zhao H, Ako R T, Nickl S, and Sriram S 2020 Appl. Phys. Lett. 117 011105
[22] Ji X, Yue J, Qi X, Meng D, Chen Z and Li P 2021 J. Appl. Phys. 130 075301
[23] Bhuiyan A F M A U, Feng Z, Johnson J M, Huang H L, Sarker J, Zhu M, Karim M R, Mazumder B, Hwang J and Zhao H 2020 APL Mater. 8 031104
[24] Krueger B W, Dandeneau C S, Nelson E M, Dunham S T, Ohuchi F S and Olmstead M A 2016 J. Am. Ceram. Soc. 99 2467
[25] Jiao S, Lu H, Wang X, Nie Y, Wang D, Gao S and Wang J 2019 ECS J. Solid State Sci. Technol. 8 Q3086
[26] Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240
[27] Wang J, Xiong Y, Ye L, Li W, Qin G, Ruan H, Zhang H, Fang L, Kong C and Li H 2021 Opt. Mater. 112 110808
[28] Chen X, Xia N, Yang Z, Gong F, Wei Z, Wang D, Tang J, Fang X, Fang D and Liao L 2018 Nanotechnology 29 095201
[29] Oshima T, Kato Y, Kawano N, Kuramata A, Yamakoshi S, Fujita S, Oishi T and Kasu M 2017 Appl. Phys. Express 10 035701
[30] Zhang D, Lin W, Liu S, Zhu Y, Lin R, Zheng W and Huang F 2019 ACS Appl. Mater. Interfaces 11 48071
[31] Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu B R, Ou S L and Tu L W 2013 Opt. Express 21 24599
[32] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B 30 017302
[33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z and Tang W 2019 ACS Appl. Mater. Interfaces 11 35105
[34] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
[35] Li Y, Zhang D, Jia L, Zhu S, Zhu Y, Zheng W and Huang F 2021 Sci. China Mater. 64 3027
[36] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503
[37] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X and Singh R 2019 J. Appl. Phys. 125 144501
[38] Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217
[39] Ma M, Zhang D, Li Y, Lin R, Zheng W and Huang F 2019 ACS Appl. Electron. Mater. 1 1653
[40] Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R and Tang W H 2017 Semicond. Sci. Technol. 32 03LT01
[41] Li Y, Zhang D, Lin R, Zhang Z, Zheng W and Huang F 2019 ACS Appl. Mater. Interfaces 11 1013
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[4] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[5] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[6] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[7] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
[8] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[9] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[10] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[11] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[12] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[13] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[14] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[15] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
No Suggested Reading articles found!