CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation |
Jian-Ying Yue(岳建英)1,2, Xue-Qiang Ji(季学强)1,2, Shan Li(李山)1,2, Xiao-Hui Qi(岐晓辉)1,2, Pei-Gang Li(李培刚)1,2,†, Zhen-Ping Wu(吴真平)1,2, and Wei-Hua Tang(唐为华)1,2,3,‡ |
1 Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 College of Electronic and Optical Engineering&College of Microelectronics, National and Local Joint Engineering Laboratory for RF Integration and Micro-Packaging Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210046, China |
|
|
Abstract Solar-blind ultraviolet photodetectors with metal-semiconductor-metal structure were fabricated based on β -(Al0.25Ga0.75)2O3/β -Ga2O3 film grown by metal-organic chemical vapor deposition. It was known that various surface states increase dark current and a large number of defects can hinder the transport of carriers, resulting in low switching ratio and low responsivity of the device. In this work, β -(Al0.25Ga0.75)2O3 films are used as surface passivation materials. Owning to its wide band gap, we obtain excellent light transmission and high lattice matching with β -Ga2O3. We explore the change and mechanism of the detection performance of the β -Ga2O3 detector after β -(Al0.25Ga0.75)2O3 surface passivation. It is found that under the illumination with 254 nm light at bias 5 V, the β -(Al0.25Ga0.75)2O3/β -Ga2O3 photodetectors show dark current of just 18 pA and high current on/off ratio of 2.16×105. The dark current is sharply reduced about 50 times after passivation of the β -Ga2O3 surface, and current on/off ratio increases by approximately 2 times. It is obvious that β -Ga2O3 detectors with β -(Al0.25Ga0.75)2O3 surface passivation can offer superior detector performance.
|
Received: 11 June 2022
Revised: 15 August 2022
Accepted manuscript online: 18 August 2022
|
PACS:
|
67.30.hr
|
(Films)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.65.Rv
|
(Passivation)
|
|
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 042600055) and Research on Frontiers of Materials Science, Beijing Municipal Science and Technology Commission (Grant No. Z181100004418006). |
Corresponding Authors:
Pei-Gang Li, Wei-Hua Tang
E-mail: pgli@bupt.edu.cn;whtang@njupt.edu.cn
|
Cite this article:
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华) Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation 2023 Chin. Phys. B 32 016701
|
[1] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [2] Yan Z Y, Li S, Liu Z, Liu W J, Qiao F, Li P G, Tang X, Li X H, Yue J Y, Guo Y F and Tang W H 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803208 [3] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201 [4] Wang X, Wu Z P, Cui W, Zhi Y S, Li Z P, Li P G, Guo D Y and Tang W H 2019 Chin. Phys. B 28 017305 [5] Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301 [6] Zhang F, Saito K, Tanaka T, Nishio M, Arita M and Guo Q 2014 Appl. Phys. Lett. 105 162107 [7] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B 30 017302 [8] Wu Y L, Weng W Y, Chang S J, Huang Z D and Chiu C J 2012 ECS Meet. Abstr. MA2012-01 1614 [9] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203 [10] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lv H and Liu M 2019 IEEE Electron Device Lett. 40 1475 [11] Anhar Uddin Bhuiyan A F M, Feng Z, Johnson J M, Chen Z, Huang H L, Hwang J and Zhao H 2019 Appl. Phys. Lett. 115 120602 [12] Anhar Uddin Bhuiyan A F M, Feng Z, Johnson J M, Huang H L, Hwang J and Zhao H 2020 Cryst. Growth Des. 20 6722 [13] Zhang Y, Joishi C, Xia Z, Brenner M, Lodha S and Rajan S 2018 Appl. Phys. Lett. 112 233503 [14] Varley J B, Perron A, Lordi V, Wickramaratne D and Lyons J L 2020 Appl. Phys. Lett. 116 172104 [15] Zhang F, Hu C, Arita M, Saito K, Tanaka T and Guo Q 2020 AIP Adv. 10 065125 [16] Miller R, Alema F and Osinsky A 2018 IEEE Trans. Semicond. Manuf. 31 467 [17] Uchida T, Jinno R, Takemoto S, Kaneko K and Fujita S 2018 Jpn. J. Appl. Phys. 57 040314 [18] Ito H, Kaneko K and Fujita S 2012 Jpn. J. Appl. Phys. 51 053102 [19] Li S, Yue J, Ji X, Lu C, Yan Z, Li P, Guo D, Wu Z and Tang W 2021 J. Mater. Chem. C 9 5437 [20] Li S, Zhi Y, Lu C, Wu C, Yan Z, Liu Z, Yang J, Chu X, Guo D, Li P, Wu Z and Tang W 2021 J. Phys. Chem. Lett. 12 447 [21] Zhao Z, Zhao H, Ako R T, Nickl S, and Sriram S 2020 Appl. Phys. Lett. 117 011105 [22] Ji X, Yue J, Qi X, Meng D, Chen Z and Li P 2021 J. Appl. Phys. 130 075301 [23] Bhuiyan A F M A U, Feng Z, Johnson J M, Huang H L, Sarker J, Zhu M, Karim M R, Mazumder B, Hwang J and Zhao H 2020 APL Mater. 8 031104 [24] Krueger B W, Dandeneau C S, Nelson E M, Dunham S T, Ohuchi F S and Olmstead M A 2016 J. Am. Ceram. Soc. 99 2467 [25] Jiao S, Lu H, Wang X, Nie Y, Wang D, Gao S and Wang J 2019 ECS J. Solid State Sci. Technol. 8 Q3086 [26] Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240 [27] Wang J, Xiong Y, Ye L, Li W, Qin G, Ruan H, Zhang H, Fang L, Kong C and Li H 2021 Opt. Mater. 112 110808 [28] Chen X, Xia N, Yang Z, Gong F, Wei Z, Wang D, Tang J, Fang X, Fang D and Liao L 2018 Nanotechnology 29 095201 [29] Oshima T, Kato Y, Kawano N, Kuramata A, Yamakoshi S, Fujita S, Oishi T and Kasu M 2017 Appl. Phys. Express 10 035701 [30] Zhang D, Lin W, Liu S, Zhu Y, Lin R, Zheng W and Huang F 2019 ACS Appl. Mater. Interfaces 11 48071 [31] Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu B R, Ou S L and Tu L W 2013 Opt. Express 21 24599 [32] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B 30 017302 [33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z and Tang W 2019 ACS Appl. Mater. Interfaces 11 35105 [34] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554 [35] Li Y, Zhang D, Jia L, Zhu S, Zhu Y, Zheng W and Huang F 2021 Sci. China Mater. 64 3027 [36] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503 [37] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X and Singh R 2019 J. Appl. Phys. 125 144501 [38] Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217 [39] Ma M, Zhang D, Li Y, Lin R, Zheng W and Huang F 2019 ACS Appl. Electron. Mater. 1 1653 [40] Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R and Tang W H 2017 Semicond. Sci. Technol. 32 03LT01 [41] Li Y, Zhang D, Lin R, Zhang Z, Zheng W and Huang F 2019 ACS Appl. Mater. Interfaces 11 1013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|