Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126101    DOI: 10.1088/1674-1056/27/12/126101
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Review of improved spectral response of ultraviolet photodetectors by surface plasmon

You Wu(吴忧)1,2, Xiao-Juan Sun(孙晓娟)1, Yu-Ping Jia(贾玉萍)1, Da-Bing Li(黎大兵)1
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Ultraviolet (UV) photodetectors based on wide band gap semiconductor have attracted much attention for their small volume, low working voltage, long lifetime, good chemical and thermal stability. Up to now, many researches have been done on the semiconductors based UV detectors and some kinds of detectors have been made, such as metal-semiconductor-metal (MSM), Schottky, and PIN-type detectors. However, the sensitivity values of those detectors are still far from the expectation. Recent years, surface plasmon (SP) has been considered to be an effective way to enhance the sensitivity of semiconductor based UV photodetector. When the light is matched with the resonance frequency of surface plasmon, the localized field enhancement or scattering effect will happen and thus the spectral response will be enhanced. Here, we present an overview of surface plasmon enhancing the performance of UV detectors, including the GaN, ZnO, and other wide band gap semiconductor UV detectors. Both fundamental and experimental achievements are contained in this review.

Keywords:  detectors      surface plasmonic      GaN      ultraviolet  
Received:  27 August 2018      Revised:  25 September 2018      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400904), the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 61725403), the National Natural Science Foundation of China (Grant Nos. 61574142, 61322406, 61704171, and 11705206), the Key Program of International Partnership Program of the Chinese Academy of Sciences (Grant No. 181722KYSB20160015), the Special Project for Inter-government Collaboration of State Key Research and Development Program, China (Grant No. 2016YFE0118400), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Jilin Provincial Science & Technology Department, China (Grant No. 20180201026GX), the Interdisciplinary Innovation Team of the Chinese Academy of Sciences, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015171).

Corresponding Authors:  Xiao-Juan Sun, Da-Bing Li     E-mail:  sunxj@ciomp.ac.cn;lidb@ciomp.ac.cn

Cite this article: 

You Wu(吴忧), Xiao-Juan Sun(孙晓娟), Yu-Ping Jia(贾玉萍), Da-Bing Li(黎大兵) Review of improved spectral response of ultraviolet photodetectors by surface plasmon 2018 Chin. Phys. B 27 126101

[1] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[2] Razeghi M 2002 Proc. IEEE 90 1006
[3] Muñoz E 2007 Phys. Stat. Sol. (b) 244 2859
[4] Sajjad M, Jadwisienczak W M and Feng P 2014 Nanoscale 6 4577
[5] Atalla M, Jiang Z Y, Liu J, Wang L, Ashok S and Xu J 2015 J. Appl. Phys. 117 134503
[6] Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez F J, Diaz J and Razeghi M 1999 Appl. Phys. Lett. 74 762
[7] Butun B, Tut T, Ulker E, Yelboga T and Ozbay E 2008 Appl. Phys. Lett. 92 033507
[8] Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photon. 10 43
[9] Stockman M I 2011 Phys. Today 64 39
[10] Wood R W 1902 Proc. Phys. Soc. London 18 269
[11] Folge V 1904 Ann. Phys. 318 857
[12] Fano U 1941 JOSA 31 213
[13] Pines D 1956 Rev. Mod. Phys. 28 184
[14] Ritchie R H 1957 Phys. Rev. 106 874
[15] Butun S, Cinel N A and Ozbay E 2012 Nanotechnology 23 444010
[16] Cho C Y, Zhang Y J, Cicek E, Rahnema B, Bai Y B, McClintock R and Razeghi M 2013 Appl. Phys. Lett. 102 211110
[17] Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
[18] Clavero C 2014 Nat. Photon. 8 95
[19] Beck F J, Polman A and Catchpole K R 2009 J. Appl. Phys. 105 114310
[20] Homola J 2008 Chem. Rev. 108 462
[21] Bri, V A, Thilakarathne V, Kasi R M and Kumar C V 2012 Talanta 99 113
[22] Cho C Y, Lee S J, Song J H, Hong S H, Lee S M, Cho Y H and Park S J 2011 Appl. Phys. Lett. 98 051106
[23] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[24] Derkacs D, Lim S H, Matheu P, Mar W and Yu E T 2006 Appl. Phys. Lett. 89 093103
[25] Ye W, Zhang W, Wang S, Qi Z Q, Luo Z W, Chen C Q and Dai J N 2017 Opt. Commun. 395 175
[26] Li Y, Liu B, Zhang R, Xie Z L, Zhuang Z, Dai J P, Tao T, Zhi T, Zhang G G, Chen P, Ren F F, Zhao H and Zheng Y D 2015 J. Appl. Phys. 117 153103
[27] Shim J P, Choi S B, Kong D J, Seo D J, Kim H J and Lee D S 2016 Opt. Express 24 A1176
[28] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nat. Mater. 3 601
[29] Lai C W, An J and Ong H C 2005 Appl. Phys. Lett. 86 251105
[30] Li D B, Sun X J, Song H, Li Z M, Chen Y R, Jiang H and Miao G Q 2012 Adv. Mater. 24 845
[31] Zhang W, Xu J, Ye W, Li Y, Qi Z Q, Dai J N, Wu Z H, Chen C Q, Yin J, Li J, Jiang H and Fang Y Y 2015 Appl. Phys. Lett. 106 021112
[32] Gao N, Huang K, Li J C, Li S P, Yang X and Junyong Kang 2012 Sci. Rep. 2 816
[33] Zhang C, Tang N, Shang L L, Fu L, Wang W Y, Xu F J, Wang X Q, Ge W K and Shen B 2017 Sci. Rep. 7 2358
[34] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[35] Gérard D and Gray S K 2015 J. Phys. D: Appl. Phys. 48 184001
[36] Jiao X J and Blair S 2012 Opt. Express 20 29909
[37] Murray A W and Barnes W L 2007 Adv. Mater. 19 3771
[38] Knight M W, King N S, Liu L F, Everitt H O, Nordlander P and Halas N J 2014 ACS Nano 8 834
[39] Kwon M K, Kim J Y, Kim B H, Park I K, Cho C Y, Byeon C C and Park S J 2008 Adv. Mater. 20 1253
[40] Pryce I M, Koleske D D, Fischer A J and Atwater H A 2010 Appl. Phys. Lett. 96 153501
[41] Li D B, Sun X J, Jia Y P, Stockman M I, Paudel H P, Song H, Jiang H and Li Z M 2017 Light: Sci. Appl. 6 e17038
[42] Liu X T, Li D B, Sun X J, Li Z M, Song H, Jiang H and Chen Y R 2015 Sci. Rep. 5 12555
[43] Kumar M, Kojori H S, Kim S J, Park H H, Kim J and Yun J H 2016 J. Photon. Energy 6 042508
[44] Wang X, Liu K W, Chen X, Li B H, Jiang M M, Zhang Z Z, Zhao H F and She D S 2017 ACS Appl. Mater. Interfaces 9 5574
[45] Li G M, Song J D, Zhang J W and Hou X 2014 Solid-State Electron. 92 47
[46] Li G M, Zhang J W, Chen G D, Ye H G, Duan X Y and Hou X 2016 Solid-State Electron. 123 33
[47] Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
[48] Villesen T F, Uhrenfeldt C, Johansen B and Larsen A N 2013 Nanotechnology 24 275606
[49] Martin J, Proust J, Gérard D and Plain J 2013 Opt. Mater. Express 3 954
[50] Bao G H, Li D B, Sun X J, Jiang M M, Li Z M, Song H, Jiang H, Chen Y R, Miao G Q and Zhang Z W 2014 Opt. Express 22 24286
[51] Lecarme O, Sun Q, Ueno K and Misawa H 2014 ACS Photon. 1 538
[52] Lérondel G, Kostcheev S and Plain J 2012 Nanofabrication for Plasmonics Plasmonics: from Basics to Advanced Topics (Berlin, Springer-Verlag Berlin) pp. 269-316
[53] Chan G H, Zhao J, Schatz G C and Van Duyne R P 2008 J. Phys. Chem. C 112 13958
[54] Honda M, Kumamoto Y, Taguchi A, Saito Y and Kawata S 2014 Appl. Phys. Lett. 104 061108
[55] Mak G Y, Fu W Y, Lam E Y and Choi H W 2009 Phys. Status Solidi C 6 S654
[56] Hulteen J C and Van Duyne P 1995 J. Vac. Sci. Technol. A 13 1553
[57] Taguchi A, Saito Y, Watanabe K, Yijian S and Kawata S 2012 Appl. Phys. Lett. 101 081110
[58] Shi X Q, Yang Z M, Yin S C and Zeng H B 2016 Mater. Technol.: Advanced Performance Mater. 31 544
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[7] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[8] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[13] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
No Suggested Reading articles found!