Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080501    DOI: 10.1088/1674-1056/ac5983
GENERAL Prev   Next  

Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow

Pei-Feng Lin(林培锋)1, Xiao Hu(胡箫)1,2,†, and Jian-Zhong Lin(林建忠)2
1 Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Abstract  The lattice Boltzmann method is used to study the inertial focusing and rotating characteristics of two-dimensional elliptical particles and rectangular particles in channel flow. The results show that both elliptical particles and rectangular particles initially located on one side and two sides of channel centerline migrate first towards the equilibrium position. Then, the single-line particle train with an increasing spacing and the staggered particle train with stable spacing are formed. The axial spacing of the staggered particle pair increases with aspect ratio and Reynolds number increasing. The staggered elliptical or rectangular particle pairs form perpendicular orientation angles, which will be more obvious at larger aspect ratio and lower Reynolds number. The single-line particle trains with different shapes seldom form the perpendicular orientation angle.
Keywords:  lattice Boltzmann method      particle trains self-organization      inertial migration      particle shape  
Received:  11 January 2022      Revised:  13 February 2022      Accepted manuscript online:  02 March 2022
PACS:  05.20.Dd (Kinetic theory)  
  05.65.+b (Self-organized systems)  
  47.11.Qr (Lattice gas)  
  47.57.E- (Suspensions)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 12132015), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ22A020008), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2020C03081).
Corresponding Authors:  Xiao Hu     E-mail:

Cite this article: 

Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠) Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow 2022 Chin. Phys. B 31 080501

[1] Segré G and Silberberg A 1961 Nature 189 209
[2] Ouyang Z Y, Lin J Z and Ku X K 2017 Chin. Phys. B 26 014701
[3] Liu T, Wang Q, Yuan Y, Wang K and Li G J 2018 Chin. Phys. B 27 118103
[4] Tang Y X, Wang S X, Huang Y Z and Fang Y R 2022 Chin. Phys. B 31 017303
[5] Hu X, Lin P F, Lin J Z, Zhu Z C and Yu Z S 2022 J. Fluid Mech. 936 A5
[6] Li R, Zhang D M and Li Z H 2012 Chin. Phys. Lett. 29 010503
[7] Matas J P, Morris J F and Guazzelli E 2004 J. Fluid Mech. 515 171
[8] Daniel C P, Mehmet T and Patrick S D 2007 Science 315 1393
[9] Hur S C, Tse H T and Di Carlo D 2010 Lab on A Chip 10 274
[10] Hood K and Roper M 2018 Phys. Rev. Fluids 3 094201
[11] Gao Y F, Magaud P, Baldas L, Lafforgue C and Abbas M 2017 Microfluidics and Nanofluidics 21 154
[12] Kahkeshani S, Haddadi H and Di Carlo D 2016 J. Fluid Mech. 786 R3
[13] Pan Z H, Zhang R, Yuan C and Wu H Y 2018 Phys. Fluids 30 081703
[14] Gupta A, Magaud P, Lafforgue C and Abbas M 2018 Phys. Rev. Fluids 3 114302
[15] Hu X, Lin J Z and Ku X K 2019 Phys. Fluids 31 073306
[16] Schaaf C and Stark H 2020 Eur. Phys. J. E 43 50
[17] Hu X, Lin J Z, Chen D M and Ku X K 2020 Microfluidics and Nanofluidics 24 25
[18] Lashgari I, Ardekani M N, Banerjee I, Russom A and Brandt L 2017 J. Fluid Mech. 819 540
[19] Jing Y, Gong D J F, Wang X X, Wang Z C, Li J Q, Hu B W and Xia C J 2022 Chin. Phys. B 31 014501
[20] Chen R Q and Nie D M 2017 Chin. J. Theor. Appl. Mech. 49 257 (in Chinese)
[21] Aidun C K, Lu Y and Ding E 2000 J. Fluid Mech. 373 287
[22] Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A and Di Carlo D 2012 Phys. Rev. X 2 031017
[23] Chen S D, Pan T W and Chang C C 2012 Phys. Fluids 24 103302
[24] Hu X, Lin J Z, Guo Y and Ku X K 2021 Phys. Fluids 33 013310
[25] Huang H and Lu X Y 2017 J. Fluid Mech. 822 664
[26] Lin J Z, Wang Y L, Wang W X and Yu Z S 2002 J. Envir. Sci. 14 433
[27] Hur S C, Choi S E, Kwon S and Di Carlo D 2011 Appl. Phys. Lett. 99 044101
[28] Su J H, Chen X D and Hu G Q 2018 Phys. Fluids 30 032007
[29] Qian Y H, D'Humiéres D and Lallemand P 1992 Europhys. Lett. 17 479
[30] Chen S Y and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[31] Zuo H, Deng S C and Li H B 2019 Chin. Phys. B 28 030202
[32] Hu M D, Zhang Q Y, Sun D K and Zhu M F 2019 Acta Phys. Sin. 68 030501 (in Chinese)
[33] Zhang Q Y, Sun D K, Zhang S H, Wang H and Zhu M F 2020 Chin. Phys. B 29 078104
[34] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[35] Ladd A J C 1994 J. Fluid Mech. 271 285
[36] Jeffery G B 1922 Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 102 161
[37] Hu X, Lin J Z, Guo Y and Ku X K 2021 Powder Technology 377 585
[1] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[2] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[3] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[6] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[7] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[8] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[9] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[10] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[11] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[12] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[13] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[14] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[15] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
No Suggested Reading articles found!