Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038502    DOI: 10.1088/1674-1056/ac9820
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes

Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红)
National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  The high-temperature performance of 4H-SiC ultraviolet avalanche photodiodes (APDs) in both linear and Geiger modes is extensively investigated. During the temperature-dependent measurements, a fixed bias voltage is adopted for the device samples, which is much more practical and important for high-temperature applications. The results show that the fabricated 4H-SiC APDs are very stable and reliable at high temperatures. As the temperature increases from room temperature to 425 K, the dark current at 95% of the breakdown voltage increases slightly and remains lower than 40 pA. In Geiger mode, our 4H-SiC APDs can be self-quenched in a passive-quenching circuit, which is expected for high-speed detection systems. Moreover, an interesting phenomenon is observed for the first time: the single-photon detection efficiency shows a non-monotonic variation as a function of temperature. The physical mechanism of the variation in high-temperature performance is further analyzed. The results in this work can provide a fundamental reference for researchers in the field of 4H-SiC APD ultraviolet detectors.
Keywords:  4H-SiC      avalanche photodiode      ultraviolet detector      high temperature  
Received:  21 June 2022      Revised:  01 October 2022      Accepted manuscript online:  07 October 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  95.85.Mt (Ultraviolet (10-300 nm))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974134) and Hebei Province Outstanding Youth Fund (Grant No. F2021516001).
Corresponding Authors:  Yuan-Jie Lv, Zhi-Hong Feng     E-mail:  yuanjielv@163.com;ga917vv@163.com

Cite this article: 

Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红) Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes 2023 Chin. Phys. B 32 038502

[1] Xin X, Yan F, Sun X, et al. 2005 Electron Lett. 41 212
[2] Guo X, Beck A L, Li X, et al. 2005 IEEE J. Quantum Electron. 41 562
[3] Guo X, Rowland L B, Dunne G T, et al. 2006 IEEE Photon. Technol. Lett. 18 136
[4] Liu H D, Guo X, McIntosh D, et al. 2006 IEEE Photon. Technol. Lett. 18 2508
[5] Hu J, Xin X, Li X, et al. 2008 IEEE Trans. Electron Devices 55 1977
[6] Liu H D, McIntosh D, Bai X, et al. 2008 IEEE Photon. Technol. Lett. 20 1551
[7] Liu H D, Zheng X, Zhou Q, et al. 2009 IEEE J. Quantum Electron. 45 1524
[8] Vert A, Soloviev S, Fronheiser J, et al. 2008 IEEE Photon. Technol. Lett. 20 1587
[9] Zhou Q, Liu H D, McIntosh D C, et al. 2009 IEEE Photon. Technol. Lett. 21 1734
[10] Bai X, Liu H D, McIntosh D C, et al. 2009 IEEE J. Quantum Electron. 45 300
[11] Zhou Q, McIntosh D, Liu H D, et al. 2011 IEEE Photon. Technol. Lett. 23 299
[12] Hu J, Xin X, Zhao J H, et al. 2011 IEEE Trans. Nucl. Sci. 58 3343
[13] Zhou X, Tan X, Wang Y G, et al. 2019 Chin. Opt. Lett. 17 090401
[14] Cai X, Zhou D, Yang S, et al. 2016 IEEE Photon. J. 8 6805107
[15] Zhou X, Han T, Lv Y, et al. 2018 IEEE Electron Device Lett. 39 1724
[16] Zhou X, Li J, Lu W, et al. 2018 Chin. Opt. Lett. 16 060401
[17] Liu F, Yang S, Zhou D, et al. 2015 Chin. Phys. Lett. 32 88503
[18] Liu F, Zhou D, Lu H, et al. 2015 Chin. Phys. Lett. 32 128501
[19] Vert A, Soloviev S, Bolotnikov A, et al. 2009 IEEE Sensors Conference
[20] Zhou X, Tan X, Lv Y, et al. 2019 IEEE Electron Dev. Lett. 40 1591
[21] Yan F, Qin C, Zhao J H, et al. 2003 Solid-State Electronics 47 241
[22] Li L, Zhou D, Lu H, et al. 2017 IEEE Photon. J. 9 6804207
[23] Zhou X, Tan X, Lv Y, et al. 2020 Opt. Express 28 29245
[24] Guo X, Beck A L, Huang Z, et al. 2006 IEEE Trans. Electron Devices 53 2259
[25] Cha H Y, Soloviev S, Zelakiewicz S, et al. 2008 Sensors J. 8 233
[26] Zhou D, Liu F, Lu H, et al. 2014 IEEE Photon. Technol. Lett. 26 1136
[27] Yang S, Zhou D, Cai X, et al. 2017 IEEE Trans. Electron Devices 64 4532
[28] Raghunathan R, Baliga B J, et al. 1999 Solid-State Electronics 43 199
[1] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[4] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[7] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[8] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[9] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[10] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[11] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[12] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[13] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[14] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[15] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
No Suggested Reading articles found!