Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126201    DOI: 10.1088/1674-1056/27/12/126201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds

Shanyu Quan(权善玉)1, Xudong Zhang(张旭东)1, Cong Liu(刘聪)1, Wei Jiang(姜伟)1,2
1 School of Science, Shenyang University of Technology, Shenyang 110870, China;
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract  

First principles calculations were used to explore the structural stability, mechanical properties, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy and phonon frequencies indicate that LaT2Al20 intermetallics exhibit the structural stability. The elastic moduli (B, G, E, and Hv) indicate that these intermetallics possess the better elastic properties than pure Al. The values of Poisson's ratio v and B/G demonstrate that LaT2Al20 intermetallics are all brittle materials. The anisotropy of elasticity and Young's modulus (three- and two-dimensional figures) indicate that LaT2Al20 compounds are anisotropic. Importantly, the calculated thermal quantities demonstrate that LaT2Al20 intermetallics possess the better thermal physical properties than pure Al at high temperatures.

Keywords:  LaT2Al20 intermetallics      mechanical properties      anisotropic properties      dynamical and thermodynamic properties      first-principles calculations  
Received:  15 August 2018      Revised:  09 October 2018      Accepted manuscript online: 
PACS:  62.20.-x (Mechanical properties of solids)  
  61.90.+d (Other topics in structure of solids and liquids; crystallography)  
  62.20.D- (Elasticity)  
Fund: 

Project supported by the Program for Ph. D Start-up Fund of Liaoning Province of China (Grant No. 201601161).

Corresponding Authors:  Xudong Zhang     E-mail:  zxdwfc@163.com

Cite this article: 

Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟) First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds 2018 Chin. Phys. B 27 126201

[1] Schlapbach L and Züttel A 2001 Nature 414 353
[2] Taend J, Orthacker A and Amenitsch H 2016 Acta Mater. 117 43
[3] Yu L B, Wang J, Qu F S, Wang M and Wang W 2018 J. Alloys Compd. 737 655
[4] Suwanpreecha C, Pandee P, Patakham U and Limmaneevichitr C 2018 Mater. Sci. Eng. A 709 46
[5] Dorin T, Ramajayam M, Lamb J and Langanc T 2017 Mater. Sci. Eng. A 707 58
[6] Tian T, Wang X F and Li W 2013 Solid State Commun. 156 69
[7] Marquis E A, Seidman D N and Dun, D C 2002 Acta Mater. 50 4021
[8] Iwamura S and Miura Y 2004 Acta Mater. 52 591
[9] Mikhaylovskay A V, Mochugovskiy A G, Levchenko V S and Mufalo W 2018 Mater. Charact. 139 30
[10] Chen Z, Zhang P, Chen D, Wu Y and Wang M 2015 J. Appl. Phys. 117 085904
[11] Clouet E, Barbu A, La L and Martin G 2005 Acta Mater. 53 2313
[12] Vo N Q, Dun, D C and Seidman D N 2014 Acta Mater. 63 73
[13] Spierings A B and Dawson K 2017 Mater. Design 115 52
[14] Lin J D, Okle P and Dun D C 2017 Mater. Sci. Eng. A 680 64
[15] Wen S P, Wang W and Zhao W H 2016 J. Alloys Compd. 687 143
[16] Halevy I, Sterer E, Aizenshtein M, Kimmel G, Regev D and Yahel E 2001 J. Alloys Compd. 319 19
[17] Yamada A, Higashinaka R, Matsuda T D and Aoki Y 2018 J. Phys. Soc. Jpn. 87 033707
[18] Bram A I, Venkert A and Meshi L 2015 J. Alloys Compd. 641 1
[19] Wakiya K, Onimaru T and Matsumoto K T 2017 J. Phys. Soc. Jpn. 86 3
[20] Winiarski M J, Griveau J C, Colineau E and Wochowski K 2017 J. Alloys Compd. 696 1113
[21] Liu P C, Xian Y J, Wang X, Zhang Y T and Zhang P C 2017 J. Nucl. Mater. 493 147
[22] Winiarski M J and Klimczuk T 2017 J. Solid State Chem. 245 10
[23] Moussa C, Berche A, Pasturel M, Barbosa J, Stepnik B, Dubois and Tougait O 2017 J. Alloys Compd. 691 893
[24] Winiarski M J and Klimczuk T 2017 Intermetallics 85 103
[25] Winiarski M J, Wiendlocha B, Sternik M, Winiewski P, O'Brien J R, Kaczorowski D and Klimczuk T 2016 Phys. Rev. B 93 134507
[26] Sakai A and Nakatsuji S 2011 Phys. Rev. B 84 201106
[27] Swatek P and Kaczorowski D 2016 J. Magn. Magn. Mater. 416 348
[28] Tsujimoto M, Matsumoto Y, Tomita T, Sakai A and Nakatsuji S 2014 Phys. Rev. Lett. 113 267001
[29] Kumar K R, Nair H S, Christian R, Thamizhavel A and Strydom A M 2016 J. Phys.: Condens. Matter 28 436002
[30] Verbovytsky Y, Latka K and Tomala K 2007 J. Alloys Compd. 442 334
[31] Kangas M J, Schmitt D C, Sakai A, Nakatsuji S and Chan J Y 2012 J. Solid State Chem. 196 274
[32] Thiede V M T, Jeitschko W, Niemann S and Ebel T 1998 J. Alloys Compd. 267 23
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[35] Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
[36] Pan Y and Guan W M 2018 Ceram. Int. 44 9893
[37] Pan Y, Guan W M and Li Y Q 2018 Phys. Chem. Chem. Phys. 20 15863
[38] Song Y, Zuo X and Yue Y L 2018 Chin. Phys. B 27 037102
[39] Li Y, Dai X F, Liu G D, Wei Z Y, Liu E K, Han X L, Du Z W, Xi X K, Wang W H and Wu G H 2018 Chin. Phys. B 27 026101
[40] Liu D R, Han D, Huang M L, Zhang X, Zhang T, Dai C M and Chen S Y 2018 Chin. Phys. B 27 018806
[41] He W Q, Huang H B, Liu Z H and Ma X Q 2018 Chin. Phys. B 27 016201
[42] Stedman R and Nilson G 1966 Phys. Rev. 145 492
[43] Li Z and Tse J S 2000 Phys. Rev. B 61 14531
[44] Mao Z, Chen W, Seidman D N and Wolverton C 2011 Acta Mater. 59 3012
[45] Grimvall G 1999 Thermo Physical Properties of Materials (Amsterdam: North Holland) p. 256
[46] Chen S, Sun Y, Duan Y H, Huang B and Peng M J 2015 J. Alloys Compd. 630 202
[47] Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2013 Physica B 427 85
[48] Niu H Y, Chen X Q, Liu P T, Xing W W, Cheng X Y and Li D Z 2012 Sci. Rep. 2 718
[49] Vinet P, Rose J, Ferrante J and Smith J 1989 J. Phys.: Condens. Matter 1 1941
[50] Wallace D C 1972 Thermodynamics of Crystals (New York: Dover) p. 241
[51] Barin I 1995 Thermochemical Data of Pure Substance (Beijing: Science Press) p. 528
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!