Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 125202    DOI: 10.1088/1674-1056/27/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap

Wenjia Wang(王文家)1,2,3, Deng Zhou(周登)1,3, Youjun Hu(胡友俊)1,3, Yue Ming(明玥)1,2,3, Baolong Hao(郝保龙)1,2
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

It was found that there are multiplicity of low shear toroidicity-induced Alfvén eigenmodes in a zero beta limit if the inverse aspect ratio is larger than the magnetic shear at the mode location (Candy 1996 Phys. Lett. A 215 299). Because the reversed shear Alfvén eigenmode (RSAE) and even the RSAE associated with the non-circular triangularity-induced Alfvén eigenmode (NAE) gap (NAE-RSAE) usually reside near the shear-reversal point, the condition that the inverse aspect ratio is larger than the magnetic shear is naturally satisfied. For this reason, we numerically investigate the existence of multiplicity of core-localized NAE-RSAEs and mode characteristics in the present work. We firstly verify the existence of the multiplicity for zero beta plasma by using a D-shaped equilibrium. It is pointed out that, for a given toroidal mode number, the Alfvén cascade spectrum accommodates down-sweeping and up-sweeping modes above and below the NAE range of frequencies. An analytical model for the existence of multiple RSAE modes is in good agreement with the simulation results. One notices that the triangularity has a greater effect on the odd-type modes than that on the even-type modes:the odd-type modes come into existence because of the plasma triangularity.

Keywords:  multiple Alfvén eigenmodes      negative magnetic shear      simulation  
Received:  05 June 2018      Revised:  30 August 2018      Accepted manuscript online: 
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  83.50.Jf (Extensional flow and combined shear and extension)  
  52.65.-y (Plasma simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11675222).

Corresponding Authors:  Wenjia Wang     E-mail:  wenjiawang@ipp.ac.cn

Cite this article: 

Wenjia Wang(王文家), Deng Zhou(周登), Youjun Hu(胡友俊), Yue Ming(明玥), Baolong Hao(郝保龙) Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap 2018 Chin. Phys. B 27 125202

[1] Guo S C, Chen L, Cai S D, et al. 1989 Chin. Phys. Lett. 6 309
[2] Wong K L 1999 Plasma Phys. Control. Fusion 41 R1
[3] Sharapov S E, Alper B, Berk H L, et al. 2013 Nucl. Fusion 53 104022
[4] Wang J, Hu S H, Dai Q P and Yao L B 2010 Chin. Phys. B 19 095202
[5] Chen W, Yu L M, Liu Y, et al. 2014 Nucl. Fusion 54 104002
[6] Sharapov S E, Testa D, Alper B, et al. 2001 Phys. Lett. A 289 127
[7] Nazikian R, Kramer G J, Cheng C Z, et al. 2003 Phys. Rev. Lett. 91 125003
[8] Zeel, M A V, Kramer G J, Nazikian R, et al. 2005 Plasma Phys. Control. Fusion 47 L31
[9] Kramer G J, Fu G Y, Nazikian R, et al. 2008 Plasma Phys. Control. Fusion 50 082001
[10] Edlund E M, Porkolab M, Kramer G J, et al. 2010 Plasma Phys. Control. Fusion 52 115003
[11] Berk H L, Borba D N, Breizman B N, et al. 2001 Phys. Rev. Lett. 87
[12] Breizman B N, Berk H L, Pekker M S, et al. 2003 Phys. Plasmas 10 3649
[13] Xie H S and Xiao Y 2015 Phys. Plasmas 22 022518
[14] Fu G Y and Berk H L 2006 Phys. Plasmas 13 052502
[15] Gorelenkov N N, Kramer G J and Nazikian R 2006 Plasma Phys. Control. Fusion 48 1255
[16] Kramer G J, Gorelenkov N N, Nazikian R and Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23
[17] Gorelenkov N N, Kramer G J and Nazikian R 2011 Phys. Plasmas 18 102503
[18] Fasoli A, Testa D, Sharapov S, et al. 2002 Plasma Phys. Control. Fusion 44 B159
[19] Kramer G J and Fu G Y 2006 Plasma Phys. Control. Fusion 48 1285
[20] Betti R and Freidberg J P 1991 Phys. Fluids B: Plasma Phys. 3 1865
[21] Betti R and Freidberg J P 1992 Phys. Fluids B: Plasma Phys. 4 1465
[22] Chen W, Yu L M, Ding X T, et al. 2016 Nucl. Fusion 56 036018
[23] Candy J, Breizman B, Van Dam J and Ozeki T 1996 Phys. Lett. A 215 299
[24] Marchenko V S 2009 Phys. Plasmas 16 044504
[25] Wang W J, Zhou D, Hu Y J and Ming Y 2018 AIP Adv. 8 035104
[26] Cheng C and Chance M 1987 J. Comput. Phys. 71 124
[27] Yang W J, Li G Q, Hu Y J and Gao X 2017 Fusion Eng. Design 114 118
[28] Hu Y J, Li G Q, Gorelenkov N N, et al. 2014 Phys. Plasmas 21 052510
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[8] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[9] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!