INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices |
Junkai Jiang(蒋俊锴)1,2, Faran Chang(常发冉)1, Wenguang Zhou(周文广)1, Nong Li(李农)1, Weiqiang Chen(陈伟强)1, Dongwei Jiang(蒋洞微)1,2,3, Hongyue Hao(郝宏玥)1,2,3, Guowei Wang(王国伟)1,2,3,†, Donghai Wu(吴东海)1,2,3, Yingqiang Xu(徐应强)1,2,3, and Zhi-Chuan Niu(牛智川)1,2,3,‡ |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China; 3 Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated. At 300 K, the device exhibits a 50% cut-off wavelength of $\sim 2.1 $μm as predicted from the band structure calculation; the device responsivity peaks at 0.85 A/W, corresponding to a quantum efficiency (QE) of 56% for 2.0 μm-thick absorption region. The dark current density of 1.03$ \times 10^{-3}$ A/cm$^{2}$ is obtained under 50 mV applied bias. The device exhibits a saturated dark current shot noise limited specific detectivity ($D^{\ast }$) of 3.29$\times10^{10}$cm$\cdot$Hz$^{1/2}$/W (at a peak responsivity of 2.0 μm) under $-50$ mV applied bias.
|
Received: 02 November 2022
Revised: 03 December 2022
Accepted manuscript online: 09 December 2022
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
87.64.km
|
(Infrared)
|
|
73.21.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Key Technologies R&D Program of China (Grant Nos. 2019YFA0705203 and 2018YFA0209104), Major Program of the National Natural Science Foundation of China (Grant No. 61790581), and Aeronautical Science Foundation of China (Grant No. 20182436004). |
Corresponding Authors:
Guowei Wang, Zhi-Chuan Niu
E-mail: wangguowei@semi.ac.cn;zcniu@semi.ac.cn
|
Cite this article:
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices 2023 Chin. Phys. B 32 038503
|
[1] Bubulac L O, Tennant W E, Pasko J G, Kozlowski L J, Zandian M, Motamedi M E and D'souza A I 1997 Journal of Electronic Materials 26 649 [2] Wei Y and Razeghi M 2004 Phys. Rev. B 69 085316 [3] Piquini P, Zunger A and Magri R 2008 Phys. Rev. B 77 115314 [4] Nguyen B M, Hoffman D, Delaunay P Y, Huang E K W, Razeghi M and Pellegrino J 2008 Appl. Phys. Lett. 93 163502 [5] Youngdale E R, Meyer J R, Hoffman C A, et al. 1994 Appl. Phys. Lett. 64 3160 [6] Binh-Minh N, Guanxi C, Minh-Anh H and Razeghi M 2011 IEEE Journal of Quantum Electronics. 47 686 [7] Liu F, Yang S, Zhou D, et al. 2015 Chin. Phys. Lett. 32 88503 [8] Meng W D, Zhang H F, Deng H R, et al. 2020 Acta Phys. Sin. 69 019502 (in Chinese) [9] Kang J B, Li Q and Li M 2019 Acta Phys. Sin. 68 228501 (in Chinese) [10] Xu B, Qiu Z Y, Yang R, et al. 2019 Acta Phys. Sin. 68 227804 (in Chinese) [11] Chen F Y, Lan Z, Qiang W L, et al. 2019 Acta Phys. Sin. 68 180504 (in Chinese) [12] Zheng W M, Huang H B, Li S M, et al. 2019 Acta Phys. Sin. 68 187104 (in Chinese) [13] Wang E D, Zhu B E and Gao Y 2020 Chin. Phys. B 29 083101 [14] Liu Q L, Zhang H Y, Hao L X, et al. 2020 Chin. Phys. B 29 088501 [15] Zhang M N, Shao Y, Wang X L, et al. 2020 Chin. Phys. B 29 078503 [16] Li J S and Chen X S 2020 Chin. Phys. B 29 078703 [17] Zhang M N, Shao Y, Wang X L, et al. 2020 Chin. Phys. B 29 078503 [18] Nguyen B M, Razeghi M, Nathan V and Brown G J 2007 Quantum Sensing and Nanophotonic Devices IV 6479 113 [19] Hoang AM, Chen G, Haddadi A, Abdollahi Pour S and Razeghi M 2012 Appl. Phys. Lett. 100 211101 [20] Hoang A M, Chen G, Haddadi A and Razeghi M 2013 Appl. Phys. Lett. 102 011108 [21] Chevallier R, Dehzangi A, Haddadii A and Razeghi M 2017 Opt. Lett. 42 4299 [22] Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109 [23] Chen Y, Wang Y, Wang Z, et al. 2021 Nat. Electron. 4 357 [24] McCaldin J O, McGill T C and Mead C A 1976 Phys. Rev. Lett. 36 56 [25] Frensley W R and Kroemer H 1977 Phys. Rev. B 16 2642 [26] Jiang D W, Xiang W, Guo F Y, et al. 2016 Chin. Phys. Lett. 33 048502 [27] Li Y, Liao S K, Liang F T, Shen Q, Liang H and Peng C Z 2016 Chin. Phys. Lett. 33 030303 [28] Lv Q Q, Ye H, Yin D D, Yang X H and Han Q 2015 Chin. Phys. Lett. 32 128503 [29] Ma S S, Shu T Y, Zhu J Q, et al. 2019 Acta Phys. Sin. 68 166801 (in Chinese) [30] Wei Z M and Xia J B 2019 Acta Phys. Sin. 68 163201 (in Chinese) [31] Liu F, Zhou D, Lu H, et al. 2015 Chin. Phys. Lett. 32 128501 [32] Weng Q C, An Z H, Xiong D Y and Zhu Z Q 2015 Chin. Phys. Lett. 32 108503 [33] Wang Y F, Qu F D, Zhou J R, et al. 2015 Chin. Phys. Lett. 32 088504 [34] Yang G, Chen K F, Wang G, et al. 2020 Chin. Phys. B 29 103103 [35] Wang H, Zhang Z Y, Cai X W, et al. 2020 Chin. Phys. B 29 093601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|