Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038503    DOI: 10.1088/1674-1056/acaa2e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices

Junkai Jiang(蒋俊锴)1,2, Faran Chang(常发冉)1, Wenguang Zhou(周文广)1, Nong Li(李农)1, Weiqiang Chen(陈伟强)1, Dongwei Jiang(蒋洞微)1,2,3, Hongyue Hao(郝宏玥)1,2,3, Guowei Wang(王国伟)1,2,3,†, Donghai Wu(吴东海)1,2,3, Yingqiang Xu(徐应强)1,2,3, and Zhi-Chuan Niu(牛智川)1,2,3,‡
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated. At 300 K, the device exhibits a 50% cut-off wavelength of $\sim 2.1 $μm as predicted from the band structure calculation; the device responsivity peaks at 0.85 A/W, corresponding to a quantum efficiency (QE) of 56% for 2.0 μm-thick absorption region. The dark current density of 1.03$ \times 10^{-3}$ A/cm$^{2}$ is obtained under 50 mV applied bias. The device exhibits a saturated dark current shot noise limited specific detectivity ($D^{\ast }$) of 3.29$\times10^{10}$cm$\cdot$Hz$^{1/2}$/W (at a peak responsivity of 2.0 μm) under $-50$ mV applied bias.
Keywords:  photodetectors      infrared      superlattices  
Received:  02 November 2022      Revised:  03 December 2022      Accepted manuscript online:  09 December 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  87.64.km (Infrared)  
  73.21.Cd (Superlattices)  
Fund: Project supported by the National Key Technologies R&D Program of China (Grant Nos. 2019YFA0705203 and 2018YFA0209104), Major Program of the National Natural Science Foundation of China (Grant No. 61790581), and Aeronautical Science Foundation of China (Grant No. 20182436004).
Corresponding Authors:  Guowei Wang, Zhi-Chuan Niu     E-mail:  wangguowei@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices 2023 Chin. Phys. B 32 038503

[1] Bubulac L O, Tennant W E, Pasko J G, Kozlowski L J, Zandian M, Motamedi M E and D'souza A I 1997 Journal of Electronic Materials 26 649
[2] Wei Y and Razeghi M 2004 Phys. Rev. B 69 085316
[3] Piquini P, Zunger A and Magri R 2008 Phys. Rev. B 77 115314
[4] Nguyen B M, Hoffman D, Delaunay P Y, Huang E K W, Razeghi M and Pellegrino J 2008 Appl. Phys. Lett. 93 163502
[5] Youngdale E R, Meyer J R, Hoffman C A, et al. 1994 Appl. Phys. Lett. 64 3160
[6] Binh-Minh N, Guanxi C, Minh-Anh H and Razeghi M 2011 IEEE Journal of Quantum Electronics. 47 686
[7] Liu F, Yang S, Zhou D, et al. 2015 Chin. Phys. Lett. 32 88503
[8] Meng W D, Zhang H F, Deng H R, et al. 2020 Acta Phys. Sin. 69 019502 (in Chinese)
[9] Kang J B, Li Q and Li M 2019 Acta Phys. Sin. 68 228501 (in Chinese)
[10] Xu B, Qiu Z Y, Yang R, et al. 2019 Acta Phys. Sin. 68 227804 (in Chinese)
[11] Chen F Y, Lan Z, Qiang W L, et al. 2019 Acta Phys. Sin. 68 180504 (in Chinese)
[12] Zheng W M, Huang H B, Li S M, et al. 2019 Acta Phys. Sin. 68 187104 (in Chinese)
[13] Wang E D, Zhu B E and Gao Y 2020 Chin. Phys. B 29 083101
[14] Liu Q L, Zhang H Y, Hao L X, et al. 2020 Chin. Phys. B 29 088501
[15] Zhang M N, Shao Y, Wang X L, et al. 2020 Chin. Phys. B 29 078503
[16] Li J S and Chen X S 2020 Chin. Phys. B 29 078703
[17] Zhang M N, Shao Y, Wang X L, et al. 2020 Chin. Phys. B 29 078503
[18] Nguyen B M, Razeghi M, Nathan V and Brown G J 2007 Quantum Sensing and Nanophotonic Devices IV 6479 113
[19] Hoang AM, Chen G, Haddadi A, Abdollahi Pour S and Razeghi M 2012 Appl. Phys. Lett. 100 211101
[20] Hoang A M, Chen G, Haddadi A and Razeghi M 2013 Appl. Phys. Lett. 102 011108
[21] Chevallier R, Dehzangi A, Haddadii A and Razeghi M 2017 Opt. Lett. 42 4299
[22] Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109
[23] Chen Y, Wang Y, Wang Z, et al. 2021 Nat. Electron. 4 357
[24] McCaldin J O, McGill T C and Mead C A 1976 Phys. Rev. Lett. 36 56
[25] Frensley W R and Kroemer H 1977 Phys. Rev. B 16 2642
[26] Jiang D W, Xiang W, Guo F Y, et al. 2016 Chin. Phys. Lett. 33 048502
[27] Li Y, Liao S K, Liang F T, Shen Q, Liang H and Peng C Z 2016 Chin. Phys. Lett. 33 030303
[28] Lv Q Q, Ye H, Yin D D, Yang X H and Han Q 2015 Chin. Phys. Lett. 32 128503
[29] Ma S S, Shu T Y, Zhu J Q, et al. 2019 Acta Phys. Sin. 68 166801 (in Chinese)
[30] Wei Z M and Xia J B 2019 Acta Phys. Sin. 68 163201 (in Chinese)
[31] Liu F, Zhou D, Lu H, et al. 2015 Chin. Phys. Lett. 32 128501
[32] Weng Q C, An Z H, Xiong D Y and Zhu Z Q 2015 Chin. Phys. Lett. 32 108503
[33] Wang Y F, Qu F D, Zhou J R, et al. 2015 Chin. Phys. Lett. 32 088504
[34] Yang G, Chen K F, Wang G, et al. 2020 Chin. Phys. B 29 103103
[35] Wang H, Zhang Z Y, Cai X W, et al. 2020 Chin. Phys. B 29 093601
[1] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), and Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[12] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[13] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[14] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[15] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
No Suggested Reading articles found!