Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018103    DOI: 10.1088/1674-1056/aca9c2
Special Issue: SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices Prev   Next  

Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets

Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson
Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
Abstract  Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optogenetics, high-speed light communication, etc. The conventional top-down technology uses dry etching to define the LED size, leading to damage to the LED side walls. Since sizes of microLEDs approach the carrier diffusion length, the damaged side walls play an important role, reducing microLED performance significantly from that of large area LEDs. In this paper, we review our efforts on realization of microLEDs by direct bottom-up growth, based on selective area metal-organic vapor phase epitaxy. The individual LEDs based on either GaN nanowires or InGaN platelets are smaller than 1 μ in our approach. Such nano-LEDs can be used as building blocks in arrays to assemble microLEDs with different sizes, avoiding the side wall damage by dry etching encountered for the top-down approach. The technology of InGaN platelets is especially interesting since InGaN quantum wells emitting red, green and blue light can be grown on such platelets with a low-level of strain by changing the indium content in the InGaN platelets. This technology is therefore very attractive for highly efficient microLEDs of three primary colors for displays.
Keywords:  microLEDs      RGB      GaN      InGaN  
Received:  25 August 2022      Revised:  01 November 2022      Accepted manuscript online:  08 December 2022
PACS:  81.05.Ea (III-V semiconductors)  
  85.60.Jb (Light-emitting devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: The authors would like to thank Taiping Lu, Reine Wallenberg and Bo Monemar for valuable inputs to this project. The research was performed at LundNano Lab, a part of the MyFab-facilities. The project was supported by the Swedish Research Council (VR), the Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg foundation (KAW), the Swedish Energy Agency and Sweden's innovation agency (VINNOVA).
Corresponding Authors:  Zhaoxia Bi     E-mail:  Zhaoxia.Bi@ftf.lth.se

Cite this article: 

Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets 2023 Chin. Phys. B 32 018103

[1] Lin J Y and Jiang H X 2020 Appl. Phys. Lett. 116 100502
[2] Bi Z, Chen Z, Danesh F and Samuelson L 2021 Semiconductors and Semimetals vol. 106, ed H Jiang and J Lin (Elsevier) pp. 223-51
[3] Chen Z, Yan S and Danesh C 2021 J. Phys. D: Appl. Phys. 54 123001
[4] Wong M S, Nakamura S and DenBaars S P 2019 ECS J. Solid State Sci. Technol. 9 015012
[5] Wasisto H S, Prades J D, Gulink J and Waag A 2019 Appl. Phys. Rev. 6 041315
[6] Rajbhandari S, McKendry J J D, Herrnsdorf J, Chun H, Faulkner G, Haas H, Watson I M, O’Brien D and Dawson M D 2017 Semicond. Sci. Technol. 32 023001
[7] Wu F, Stark E, Ku P C, Wise K D, Buzsaki G and Yoon E 2015 Neuron 88 1136
[8] Jin S X, Li J, Li J Z, Lin J Y and Jiang H X 2000 Appl. Phys. Lett. 76 631
[9] Jiang H X, Jin S X, Li J, Shakya J and Lin J Y 2001 Appl. Phys. Lett. 78 1303
[10] Zhuang Z, Iida D, Velazquez-Rizo M and Ohkawa K 2021 Photon. Res. 9 1796
[11] Li P, Li H, Zhang H, Yang Y, Wong M S, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 121102
[12] Dussaigne A, Le Maitre P, Haas H, Pillet J C, Barbier F, Grenier A, Michit N, Jannaud A, Templier R, Vaufrey D, Rol F, Ledoux O and Sotta D 2021 Appl. Phys. Express 14 092011
[13] Mitchell B, Dierolf V, Gregorkiewicz T and Fujiwara Y 2018 J. Appl. Phys. 123 160901
[14] Wu Y, Liu B, Xu F, Sang Y, Tao T, Xie Z, Wang K, Xiu X, Chen P, Chen D, Lu H, Zhang R, Zhang R, Zhang R and Zheng Y 2021 Photon. Res., PRJ 9 1683
[15] Bi Z, Lenrick F, Colvin J, Gustafsson A, Hultin O, Nowzari A, Lu T, Wallenberg R, Timm R, Mikkelsen A, Ohlsson B J, Storm K, Monemar B and Samuelson L 2019 Nano Lett. 19 2832
[16] Zhu J, Takahashi T, Ohori D, Endo K, Samukawa S, Shimizu M and Wang X L 2019 Phys. Status Solidi (a) 216 1900380
[17] Yan G, Hyun B R, Jiang F, Kuo H C and Liu Z 2021 Opt. Express 29 26255
[18] Day J, Li J, Lie D Y C, Bradford C, Lin J Y and Jiang H X 2011 Appl. Phys. Lett. 99 031116
[19] Liu Z J, Wong K M, Keung C W, Tang C W and Lau K M 2009 IEEE J. Select. Topics Quantum Electron. 15 1298
[20] Meng W, Xu F, Yu Z, Tao T, Shao L, Liu L, Li T, Wen K, Wang J, He L, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1231
[21] Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C and Templier F 2017 J. Lumin. 191 112
[22] Smith J M, Ley R, Wong M S, Baek Y H, Kang J H, Kim C H, Gordon M J, Nakamura S, Speck J S and DenBaars S P 2020 Appl. Phys. Lett. 116 071102
[23] Jiang F, Zhang J, Xu L, Ding J, Wang G, Wu X, Wang X, Mo C, Quan Z, Guo X, Zheng C, Pan S and Liu J 2019 Photon. Res., PRJ 7 144
[24] White R C, Li H, Khoury M, Lynsky C, Iza M, Keller S, Sotta D, Nakamura S and DenBaars S P 2021 Crystals 11 1364
[25] Ozaki T, Funato M and Kawakami Y 2019 Appl. Phys. Express 12 011007
[26] Yam F K and Hassan Z 2008 Superlattices and Microstructures 43 1
[27] Li S F, Fuendling S, Wang X, Merzsch S, Al-Suleiman M A M, Wei J D, Wehmann H H, Waag A, Bergbauer W and Strassburg M 2011 Cryst. Growth Des. 11 1573
[28] Du D, Srolovitz D J, Coltrin M E and Mitchell C C 2005 Phys. Rev. Lett. 95 155503
[29] Khalilian M, Bi Z, Johansson J, Lenrick F, Hultin O, Colvin J, Timm R, Wallenberg R, Ohlsson J, Pistol M E, Gustafsson A and Samuelson L 2020 Small 16 1907364
[30] Hersee S D, Sun X and Wang X 2006 Nano Lett. 6 1808
[31] Lin Y T, Yeh T W and Dapkus P D 2012 Nanotechnology 23 465601
[32] Jung B O, Bae S Y, Kato Y, Imura M, Lee D S, Honda Y and Amano H 2014 CrystEngComm 16 2273
[33] Choi K, Arita M and Arakawa Y 2012 J. Cryst. Growth 357 58
[34] Bergbauer W, Strassburg M, Kolper C, Linder N, Roder C, Lahnemann J, Trampert A, Fundling S, Li S F, Wehmann H H and Waag A 2010 Nanotechnology 21 305201
[35] Monemar B, Ohlsson B J, Gardner N F and Samuelson L 2016 Semiconductors and Semimetals vol. 94, ed S A Dayeh, A Fontcuberta i Morral and C Jagadish (Elsevier) pp. 227–71
[36] Barrigón E, Heurlin M, Bi Z, Monemar B and Samuelson L 2019 Chem. Rev. 119 9170
[37] Coulon P M, Alloing B, Brändli V, Vennégués P, Leroux M and Zúñiga-Pérez J 2016 Appl. Phys. Express 9 015502
[38] Zhang H, Jacopin G, Neplokh V, Largeau L, Julien F H, Kryliouk O and Tchernycheva M 2015 Nanotechnology 26 465203
[39] Bi Z, Gustafsson A, Lenrick F, Lindgren D, Hultin O, Wallenberg L R, Ohlsson B J, Monemar B and Samuelson L 2018 J. Appl. Phys. 123 025102
[40] Bi Z, Lu T, Colvin J, Sjögren E, Vainorius N, Gustafsson A, Johansson J, Timm R, Lenrick F, Wallenberg R, Monemar B and Samuelson L 2020 ACS Appl. Mater. Interfaces 12 17845
[41] Gustafsson A, Bi Z and Samuelson L 2021 Nano Exp. 2 014006
[42] Yang Y B, Liu M G, Chen W J, Han X B, Chen J, Lin X Q, Lin J L, Luo H, Liao Q, Zang W J, Chen Y S, Qiu Y L, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 096103
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[13] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
No Suggested Reading articles found!