Special Issue:
SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
|
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices |
Prev
Next
|
|
|
Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets |
Zhaoxia Bi(毕朝霞)†, Anders Gustafsson, and Lars Samuelson |
Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden |
|
|
Abstract Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optogenetics, high-speed light communication, etc. The conventional top-down technology uses dry etching to define the LED size, leading to damage to the LED side walls. Since sizes of microLEDs approach the carrier diffusion length, the damaged side walls play an important role, reducing microLED performance significantly from that of large area LEDs. In this paper, we review our efforts on realization of microLEDs by direct bottom-up growth, based on selective area metal-organic vapor phase epitaxy. The individual LEDs based on either GaN nanowires or InGaN platelets are smaller than 1 μ in our approach. Such nano-LEDs can be used as building blocks in arrays to assemble microLEDs with different sizes, avoiding the side wall damage by dry etching encountered for the top-down approach. The technology of InGaN platelets is especially interesting since InGaN quantum wells emitting red, green and blue light can be grown on such platelets with a low-level of strain by changing the indium content in the InGaN platelets. This technology is therefore very attractive for highly efficient microLEDs of three primary colors for displays.
|
Received: 25 August 2022
Revised: 01 November 2022
Accepted manuscript online: 08 December 2022
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: The authors would like to thank Taiping Lu, Reine Wallenberg and Bo Monemar for valuable inputs to this project. The research was performed at LundNano Lab, a part of the MyFab-facilities. The project was supported by the Swedish Research Council (VR), the Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg foundation (KAW), the Swedish Energy Agency and Sweden's innovation agency (VINNOVA). |
Corresponding Authors:
Zhaoxia Bi
E-mail: Zhaoxia.Bi@ftf.lth.se
|
Cite this article:
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets 2023 Chin. Phys. B 32 018103
|
[1] Lin J Y and Jiang H X 2020 Appl. Phys. Lett. 116 100502 [2] Bi Z, Chen Z, Danesh F and Samuelson L 2021 Semiconductors and Semimetals vol. 106, ed H Jiang and J Lin (Elsevier) pp. 223-51 [3] Chen Z, Yan S and Danesh C 2021 J. Phys. D: Appl. Phys. 54 123001 [4] Wong M S, Nakamura S and DenBaars S P 2019 ECS J. Solid State Sci. Technol. 9 015012 [5] Wasisto H S, Prades J D, Gulink J and Waag A 2019 Appl. Phys. Rev. 6 041315 [6] Rajbhandari S, McKendry J J D, Herrnsdorf J, Chun H, Faulkner G, Haas H, Watson I M, O’Brien D and Dawson M D 2017 Semicond. Sci. Technol. 32 023001 [7] Wu F, Stark E, Ku P C, Wise K D, Buzsaki G and Yoon E 2015 Neuron 88 1136 [8] Jin S X, Li J, Li J Z, Lin J Y and Jiang H X 2000 Appl. Phys. Lett. 76 631 [9] Jiang H X, Jin S X, Li J, Shakya J and Lin J Y 2001 Appl. Phys. Lett. 78 1303 [10] Zhuang Z, Iida D, Velazquez-Rizo M and Ohkawa K 2021 Photon. Res. 9 1796 [11] Li P, Li H, Zhang H, Yang Y, Wong M S, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 121102 [12] Dussaigne A, Le Maitre P, Haas H, Pillet J C, Barbier F, Grenier A, Michit N, Jannaud A, Templier R, Vaufrey D, Rol F, Ledoux O and Sotta D 2021 Appl. Phys. Express 14 092011 [13] Mitchell B, Dierolf V, Gregorkiewicz T and Fujiwara Y 2018 J. Appl. Phys. 123 160901 [14] Wu Y, Liu B, Xu F, Sang Y, Tao T, Xie Z, Wang K, Xiu X, Chen P, Chen D, Lu H, Zhang R, Zhang R, Zhang R and Zheng Y 2021 Photon. Res., PRJ 9 1683 [15] Bi Z, Lenrick F, Colvin J, Gustafsson A, Hultin O, Nowzari A, Lu T, Wallenberg R, Timm R, Mikkelsen A, Ohlsson B J, Storm K, Monemar B and Samuelson L 2019 Nano Lett. 19 2832 [16] Zhu J, Takahashi T, Ohori D, Endo K, Samukawa S, Shimizu M and Wang X L 2019 Phys. Status Solidi (a) 216 1900380 [17] Yan G, Hyun B R, Jiang F, Kuo H C and Liu Z 2021 Opt. Express 29 26255 [18] Day J, Li J, Lie D Y C, Bradford C, Lin J Y and Jiang H X 2011 Appl. Phys. Lett. 99 031116 [19] Liu Z J, Wong K M, Keung C W, Tang C W and Lau K M 2009 IEEE J. Select. Topics Quantum Electron. 15 1298 [20] Meng W, Xu F, Yu Z, Tao T, Shao L, Liu L, Li T, Wen K, Wang J, He L, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y and Wang X 2021 Nat. Nanotechnol. 16 1231 [21] Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C and Templier F 2017 J. Lumin. 191 112 [22] Smith J M, Ley R, Wong M S, Baek Y H, Kang J H, Kim C H, Gordon M J, Nakamura S, Speck J S and DenBaars S P 2020 Appl. Phys. Lett. 116 071102 [23] Jiang F, Zhang J, Xu L, Ding J, Wang G, Wu X, Wang X, Mo C, Quan Z, Guo X, Zheng C, Pan S and Liu J 2019 Photon. Res., PRJ 7 144 [24] White R C, Li H, Khoury M, Lynsky C, Iza M, Keller S, Sotta D, Nakamura S and DenBaars S P 2021 Crystals 11 1364 [25] Ozaki T, Funato M and Kawakami Y 2019 Appl. Phys. Express 12 011007 [26] Yam F K and Hassan Z 2008 Superlattices and Microstructures 43 1 [27] Li S F, Fuendling S, Wang X, Merzsch S, Al-Suleiman M A M, Wei J D, Wehmann H H, Waag A, Bergbauer W and Strassburg M 2011 Cryst. Growth Des. 11 1573 [28] Du D, Srolovitz D J, Coltrin M E and Mitchell C C 2005 Phys. Rev. Lett. 95 155503 [29] Khalilian M, Bi Z, Johansson J, Lenrick F, Hultin O, Colvin J, Timm R, Wallenberg R, Ohlsson J, Pistol M E, Gustafsson A and Samuelson L 2020 Small 16 1907364 [30] Hersee S D, Sun X and Wang X 2006 Nano Lett. 6 1808 [31] Lin Y T, Yeh T W and Dapkus P D 2012 Nanotechnology 23 465601 [32] Jung B O, Bae S Y, Kato Y, Imura M, Lee D S, Honda Y and Amano H 2014 CrystEngComm 16 2273 [33] Choi K, Arita M and Arakawa Y 2012 J. Cryst. Growth 357 58 [34] Bergbauer W, Strassburg M, Kolper C, Linder N, Roder C, Lahnemann J, Trampert A, Fundling S, Li S F, Wehmann H H and Waag A 2010 Nanotechnology 21 305201 [35] Monemar B, Ohlsson B J, Gardner N F and Samuelson L 2016 Semiconductors and Semimetals vol. 94, ed S A Dayeh, A Fontcuberta i Morral and C Jagadish (Elsevier) pp. 227–71 [36] Barrigón E, Heurlin M, Bi Z, Monemar B and Samuelson L 2019 Chem. Rev. 119 9170 [37] Coulon P M, Alloing B, Brändli V, Vennégués P, Leroux M and Zúñiga-Pérez J 2016 Appl. Phys. Express 9 015502 [38] Zhang H, Jacopin G, Neplokh V, Largeau L, Julien F H, Kryliouk O and Tchernycheva M 2015 Nanotechnology 26 465203 [39] Bi Z, Gustafsson A, Lenrick F, Lindgren D, Hultin O, Wallenberg L R, Ohlsson B J, Monemar B and Samuelson L 2018 J. Appl. Phys. 123 025102 [40] Bi Z, Lu T, Colvin J, Sjögren E, Vainorius N, Gustafsson A, Johansson J, Timm R, Lenrick F, Wallenberg R, Monemar B and Samuelson L 2020 ACS Appl. Mater. Interfaces 12 17845 [41] Gustafsson A, Bi Z and Samuelson L 2021 Nano Exp. 2 014006 [42] Yang Y B, Liu M G, Chen W J, Han X B, Chen J, Lin X Q, Lin J L, Luo H, Liao Q, Zang W J, Chen Y S, Qiu Y L, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 096103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|