CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process |
Jingshu Guo(郭静姝)1,2, Jiejie Zhu(祝杰杰)1,2,†, Siyu Liu(刘思雨)1,2, Jielong Liu(刘捷龙)2,3, Jiahao Xu(徐佳豪)1,2, Weiwei Chen(陈伟伟)4, Yuwei Zhou(周雨威)2,3, Xu Zhao(赵旭)2,3, Minhan Mi(宓珉瀚)1,2, Mei Yang(杨眉)2,3, Xiaohua Ma(马晓华)1,2,‡, and Yue Hao(郝跃)1,2 |
1 School of Microelectronics, Xidian University, Xi'an 710071, China; 2 The National Key Discipline Laboratory of Wide Bandgap Semiconductor, Xidian University, Xi'an 710071, China; 3 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 4 China Academy of Space Technology(Xi'an), Xi'an 710100, China |
|
|
Abstract This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal-organic chemical vapor deposition (MOCVD) regrowth technique. The 150-nm regrown n+-InGaN exhibits a low sheet resistance of 31 Ω/□, resulting in an extremely low contact resistance of 0.102 Ω·mm between n+-InGaN and InAlN/GaN channels. Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts. Then, the diffusion mechanism between n+-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations, which could benefit the further process optimization.
|
Received: 24 April 2022
Revised: 25 July 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the Fundamental Research Funds for the National Key Research and Development Project of China (Grant No. 2020YFB1807403), the National Natural Science Foundation of China (Grant Nos. 62174125 and 62131014), the Fundamental Research Funds for the Central Universities (Grant Nos. QTZX22022 and YJS2213), and the Innovation Fund of Xidian University. |
Corresponding Authors:
Jiejie Zhu, Xiaohua Ma
E-mail: jjzhu@mail.xidian.edu.cn;xhma@xidian.edu.cn
|
Cite this article:
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process 2023 Chin. Phys. B 32 037303
|
[1] Kuzmík J 2001 IEEE Electron Dev. Lett. 22 510 [2] Then H W, Chow L A, Dasgupta S, Gardner S, Radosavljevic M, Rao V R, Sung S H, Yang G and Chau R S 2015 Symposium on VLSI Technology, June 16-18, 2015, Kyoto, Japan pp. T202-T203 [3] Wang R, Li G, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H 2011 IEEE Electron Dev. Lett. 32 892 [4] Mi M, Wu S, Zhang M, Yang L, Hou B, Zhao Z, Guo L, Zheng X, Ma X and Hao Y 2019 Appl. Phys. Express 12 114001 [5] Mi M, Zhang M, Wu S, Yang L, Hou B, Zhou Y, Guo L, Ma X and Hao Y 2020 Chin. Phys. B 29 057307 [6] Abid I, Mehta J, Cordier Y, Derluyn J, Degroote S, Miyake H and Medjdoub F 2021 Electronics 10 635 [7] Zhang L Q, Shi J S, Huang H F, Liu X Y, Zhao S X, Wang P F and Zhang D W 2015 IEEE Electron Dev. Lett. 36 896 [8] Hou M, Xie G and Sheng K 2018 IEEE Electron Dev. Lett. 39 1137 [9] Yadav Y K, Upadhyay B B, Meer M, Bhardwaj N, Ganguly S and Saha D 2019 IEEE Electron Dev. Lett. 40 67 [10] Tsou C W, Kang H C, Lian Y W and Hsu S 2016 IEEE Trans. Electron Dev. 63 4218 [11] Lu Y, Ma X, Yang L, Hou B, Mi M, Zhang M, Zheng J, Zhang H and Hao Y 2018 IEEE Electron Dev. Lett. 39 1137 [12] Lin Y K, Noda S, Lo H C, Liu S C, Wu C H, Wong Y Y, Luc Q H, Chang P C, Hsu H T, Samukawa S and Chang E Y 2016 IEEE Electron Dev. Lett. 37 1395 [13] Tzou A J, Hsieh D H, Chen S H, Li Z Y, Chang C Y and Kuo H C 2016 Semicond. Sci. Technol. 31 055003 [14] Guo J, Cao Y, Lian C, Zimmermann T, Li G, Verma J, Gao X, Guo S, Saunier P, Wistey M, Jena D and Xing H G 2011 Physica Status Solidi A 208 1617 [15] Li L, Nomoto K, Pan M, Li W, Hickman A, Miller J, Lee K, Hu Z, Bader S J, Lee S M, Hwang C M, Jena D and Xing H G 2020 IEEE Electron Dev. Lett. 41 689 [16] Tang Y, Shinohara K, Regan D, Corrion A, Brown D, Wong J, Schmitz A, Fung H, Kim S and Micovic M 2015 IEEE Electron Dev. Lett. 36 896 [17] Joglekar S, Azize M, Beeler M, Monroy E and Palacios T 2016 Appl. Phys. Lett. 109 041602 [18] Guo H Y, Lv Y J, Gu G D, Dun S B, Fang Y L, Zhang Z R, Tan X, Song X B, Zhou X Y and Feng Z H 2015 Chin. Phys. Lett. 32 118501 [19] Hatui N, Krishna A, Li H, Gupta C, Romanczyk B, Acker-James D, Ahmadi E, Keller S and Mishra U K 2020 Semicond. Sci. Technol. 35 095002 [20] Koksaldi O S, Romanczyk B, Haller J, Guidry M, Li H, Keller S and Mishra U K 2020 Semicond. Sci. Technol. 35 124004 [21] Dialea M, Aureta F D, Berga N G van der, Odendaala R Q and Roosb W D 2005 Appl. Surf. Sci. 246 279 [22] Prabhakaran K, Andersson T G and Nozawa K 1996 Appl. Phys. Lett. 69 3212 [23] Zhou Y, Mi M, Yang M, Han Y, Wang P, Chen Y, Liu J, Gong C, Lu Y, Zhang M, Zhu Q, Ma X and Hao Y 2022 Appl. Phys. Lett. 120 062104 [24] Gary S M and Simon M S 2007 Fundamentals of semiconductor fabrication translated by Dai Y P (Peking: Posts and Telecom Press) p. 80 (in Chinese) [25] Guo X H, Hu L, Ren X Y, Wu S, Zhang L Q, Zhang Z J, Yang H and Liu J P 2021 Chinese Journal of Luminescence 42 889 [26] Guo J, Li G, Faria F, Cao Y, Wang R, Verma J, Gao X, Guo S, Beam E, Ketterson A, Schuette M, Saunier P, Wistey M, Jena D and Xing H 2012 IEEE Electron Dev. Lett. 33 525 [27] Fu X C, Lv Y J, Zhang L J, Zhang T, Li X J, Song X B, Zhang Z R, Fang Y L and Feng Z H 2018 Electron. Lett. 54 783 [28] Suzuki A, Choe S, Yamada Y, Otsuka N and Ueda D 2016 Jpn. J. Appl. Phys. 55 121001 [29] Yang L, Zhang M, Hou B, Mi M, Wu M, Zhu Q, Lu Y, Zhu J, Zhou X, Lv L, Ma X and Hao Y 2020 IEEE Trans. Electron Dev. 67 4808 [30] Zhu Q, Ma X, Hou B, Wu M, Zhu J, Yang L, Zhang M and Hao Y 2020 IEEE Access 8 35520 [31] Pandey S, Cavalcoli D, Minj A, Fraboni B, Cavallini A, Gamarra P and Poisson M A 2012 J. Appl. Phys. 112 123721 [32] Godejohann B J, Ture E, Muller S, Prescher M, Kirste L, Aidam R, Polyakov V, Bruckner P, Breuer S, Kohler K, Quay R and Ambacher O 2017 Phys. Status Solidi B 254 1600715 [33] Katayama M 1991 J. Appl. Phys. 69 3541 [34] Bedair S M, McIntosh F G, Roberts J C, Piner E L, Boutros K S and E1-Masry N A 1997 J. Cryst. Growth 178 32 [35] Wang J, Xu F, Zhang X, An W, Li X Z, Song J, Ge W, Tian G, Lu J, Wang X, Tang N, Yang Z, Li W, Wang W, Jin P, Chen Y and Shen B 2014 Sci. Rep. 4 6521 [36] Dasgupta S, Nidhi, Brown D F, Wu F, Keller S, Speck J S and Mishra U K 2010 Appl. Phys. Lett. 96 143504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|