CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique |
Cheng-Yu Huang(黄成玉)1, Jin-Yan Wang(王金延)1,†, Bin Zhang(张斌)1, Zhen Fu(付振)2, Fang Liu(刘芳)2, Mao-Jun Wang(王茂俊)1, Meng-Jun Li(李梦军)1, Xin Wang(王鑫)1, Chen Wang(汪晨)1, Jia-Yin He(何佳音)1, and Yan-Dong He(何燕冬)1,‡ |
1 School of Integrated Circuits, Peking University, Beijing 100871, China; 2 Beijing Chip Identification Technology Co., Ltd, Beijing 102200, China |
|
|
Abstract Based on the self-terminating thermal oxidation-assisted wet etching technique, two kinds of enhancement mode Al$_{2}$O$_{3}$/GaN MOSFETs (metal-oxide-semiconductor field-effect transistors) separately with sapphire substrate and Si substrate are prepared. It is found that the performance of sapphire substrate device is better than that of silicon substrate. Comparing these two devices, the maximum drain current of sapphire substrate device (401 mA/mm) is 1.76 times that of silicon substrate device (228 mA/mm), and the field-effect mobility ($\mu_{\rm FEmax}$) of sapphire substrate device (176 cm$^{2}$/V$\cdot$s) is 1.83 times that of silicon substrate device (96 cm$^{2}$/V$\cdot$s). The conductive resistance of silicon substrate device is 21.2 $\Omega {\cdot }$mm, while that of sapphire substrate device is only 15.2 $\Omega {\cdot }$mm, which is 61% that of silicon substrate device. The significant difference in performance between sapphire substrate and Si substrate is related to the differences in interface and border trap near Al$_{2}$O$_{3}$/GaN interface. Experimental studies show that (i) interface/border trap density in the sapphire substrate device is one order of magnitude lower than in the Si substrate device, (ii) Both the border traps in Al$_{2}$O$_{3}$ dielectric near Al$_{2}$O$_{3}$/GaN and the interface traps in Al$_{2}$O$_{3}$/GaN interface have a significantly effect on device channel mobility, and (iii) the properties of gallium nitride materials on different substrates are different due to wet etching. The research results in this work provide a reference for further optimizing the performances of silicon substrate devices.
|
Received: 12 February 2022
Revised: 29 March 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
Fund: Project supported by the Research on Key Techniques in Reliability of Low Power Sensor Chip for IOTIPS and the Technology Project of Headquarters, State Grid Corporation of China(Grant No. 5700-202041397A-0-0-00). |
Corresponding Authors:
Jin-Yan Wang, Yan-Dong He
E-mail: wangjinyan@pku.edu.cn;heyd@pku.edu.cn
|
Cite this article:
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬) Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique 2022 Chin. Phys. B 31 097401
|
[1] Wu S, Mi M H, Ma X H, Yang L, Hou B and Hao Y 2021 Chin. Phys. B 30 087102 [2] Hao R H, Fu K, Yu G H, Li W Y, Yuan J, Song L, Zhang Z L, Sun S C, Li X J, Cai Y, Zhang X P and Zhang B S 2016 Appl. Phys. Lett. 109 152106 [3] Qi D Y, Zhang D L and Wang M X 2017 Chin. Phys. B 26 128101 [4] Medjdoub F, Van Hove M, Cheng K, Marcon D, Leys M and Decoutere S 2010 IEEE Electron Dev. Lett. 31 948 [5] Xu Z, Wang J Y, Liu J Q, Jin C Y, Cai Y, Yang Z C, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C and Hao Y 2014 IEEE Electron Dev. Lett. 35 1197 [6] Sen H, Liu X Y, Zhang J H, Wei K, Liu G G, Wang X H, Zheng Y K, Liu H G, J Z, Zhao C, Liu C, Liu S H, Yang S, Zhang J C, Hao Y and Chen K J 2015 IEEE Electron Dev. Lett. 36 754 [7] Li M J, Wang J Y, Wang H Y, Cao Q R, Liu J Q and Huang C Y 2019 Solid-State Electronics 156 58 [8] Gregušová D, Stoklas R, Mizue C, Hori Y, Novák J, Hashizume T and Kordoš P 2010 J. Appl. Phys. 107 106104 [9] Ma X H, Zhu J J, Liao X Y, Yue T, Chen W W and Hao Y 2013 Appl. Phys. Lett. 103 033510 [10] Zhang K, Xue J S, Cao M Y, Yang L Y, Chen Y H, Zhang J C, Ma X H and Hao Y 2013 J. Appl. Phys. 113 174503 [11] Tham W H, Bera L K, Ang D S, Dolmanan S B, Bhat T N and Tripathy S 2015 IEEE Electron Dev. Lett. 36 1291 [12] Zhou H, Lou X B, Conrad N J, Si M W, Wu H, Alghamdi S, Guo S P, Gordon R G and Ye P D 2016 IEEE Electron Dev. Lett. 37 556 [13] Liu S H, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B and Chen K J 2015 Appl. Phys. Lett. 106 051605 [14] Fiorenza P, Greco G, Iucolano F, Patti A and Roccaforte F 2015 Appl. Phys. Lett. 106 142903 [15] Wang H Y, Wang J Y, Liu J Q, He Y D, Wang M J, Yu M and Wu W G 2018 Solid-State Electronics 141 13 [16] Kumar S, Gupta P, Guiney I, Humphreys C J, Raghavan S, Muralidharan R and Nath D N 2017 IEEE Trans. Electron Dev. 64 4868 [17] Hua M Y, Wei J, Tang G F, Zhang Z F, Qian Q K, Cai X B, Wang N and Chen K J 2017 IEEE Electron Dev. Lett. 38 929 [18] Tajima M, Kotani J and Hashizume T 2009 Jpn. J. Appl. Phys. 48 020203 [19] Chiu H C, Yang C W, Chen C H and Wu C H 2012 IEEE Trans. Electron Dev. 59 3334 [20] Zhang B J and Liu Y 2014 Chin. Sci. Bull. 59 1251 [21] Hyun-Sik Choi 2014 IEEE Electron Dev. Lett. 35 624 [22] Fiorenza P, Greco G, Iucolano F, Patti A and Roccaforte F 2017 IEEE Transactions on Electron Dev. 64 2893 [23] Pérez-Tomás A, Placidi M, Perpiñá X, Constant A, Godignon P, Jordá X, Brosselard P and Millán J 2009 J. Appl. Phys. 105 114510 [24] Pérez-Tomás A, Placidi M, Baron N, Chenot S, Cordier Y, Moreno J C, Constant A, Godignon P and Millán J 2009 J. Appl. Phys. 106 074519 [25] Zeng Y A, White M H and Das M K 2005 Solid-State Electronics 49 1017 [26] Frazzetto A, Giannazzo F, Fiorenza P, Raineri V and Roccaforte F 2011 Appl. Phys. Lett. 99 259901 [27] Miczek M, Mizue C, Hashizume T and Adamowicz B 2008 J. Appl. Phys. 103 104510 [28] Zhu J J, Zhu Q, Chen L X, Hou B, Yang L, Zhou X W, Ma X H and Hao Y 2017 IEEE Trans. Electron Dev. 64 840 [29] Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B 21 017304 [30] Chen L X, Ma M, Cao J C, Sun J W, Que M L and Sun Y F 2021 Chin. Phys. B 30 108502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|