Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058102    DOI: 10.1088/1674-1056/27/5/058102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods

Xiao-bo Geng(耿晓波)2, Jun-xing Pan(潘俊星)1, Jin-jun Zhang(张进军)1, Min-na Sun(孙敏娜)2, Jian-yong Cen(岑建勇)1
1 School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China;
2 School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
Abstract  We investigated phase transitions in a diblock copolymer-homopolymer hybrid system blended with nanorods (NRs) by using the time-dependent Ginzburg-Landau theory. We systematically studied the effects of the number, length and infiltration properties of the NRs on the self-assembly of the composites and the phase transitions occurring in the material. An analysis of the phase diagram was carried out to obtain the formation conditions of sea island structure nanorod-based aggregate, sea island structure nanorod-based dispersion, lamellar structure nanorod-based multilayer arrangement and nanowire structure. Further analysis of the evolution of the domain sizes and the distribution of the nanorod angle microphase structure was performed. Our simulation provides theoretical guidance for the preparation of ordered nanowire structures and a reference to improve the function of a polymer nanocomposite material.
Keywords:  self-assembly      block copolymer      nanowires  
Received:  14 October 2017      Revised:  11 February 2018      Accepted manuscript online: 
PACS:  81.16.Dn (Self-assembly)  
  82.35.Jk (Copolymers, phase transitions, structure)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21373131),the Provincial Natural Science Foundation of Shanxi,China (Grant No.2015011004),and the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security,China.
Corresponding Authors:  Jun-xing Pan, Jin-jun Zhang     E-mail:  panjunxing2007@163.com;zhangjinjun@sxun.edu.cn

Cite this article: 

Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇) Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods 2018 Chin. Phys. B 27 058102

[1] Kao J, Thorkelsson K, Bai P, Rancatore B J and Xu T 2013 Chem. Soc. Rev. 42 2654
[2] Lin Y, Lim J A, Wei Q, Mannsfeld S C B, Briseno A L and Watkins J J 2012 Chem. Mater. 24 622
[3] Grubbs R B 2005 Polym. Sci. J. Part A:Polym. Chem. 43 4323
[4] Park J H and Joo Y L 2014 Phys. Chem. Chem. Phys. 16 8865
[5] Chen H Y and Ruckenstein E 2010 Polymer 51 5869
[6] Chen H Y and Ruckenstein E 2009 J. Chem. Phys. 131 244904
[7] Liu J, Wang Z X, Zhang Z Y, Shen J X, Chen Y L, Zheng Z J, Zhang L Q and Lyulin A V 2017 J. Phys. Chem. B 121 9311
[8] Chao H, Koski J and Riggleman R A 2017 Soft Matter 13 239
[9] Feng J and Ruckenstein Eli 2007 J. Chem. Phys. 126 124902
[10] Guo H X 2006 J. Chem. Phys. 124 054902
[11] Lisal M and Brennan J K 2007 Langmuir 23 4809
[12] Garcia B C, Kamperman M, Ulrich R, Jain A, Gruner S M and Wiesner U 2009 Chem. Mater. 21 5397
[13] Yeh S W, Wei K H, Sun Y S, Jeng U S and Liang K S 2005 Macromolecules 38 6559
[14] Daga V K, Anderson E R, Gido S P and Watkins J J 2011 Macromolecules 44 6793
[15] Lin Y, Daga V K, Anderson E R, Gido S P and Watkins J J 2011 J. Am. Chem. Soc. 133 6513
[16] Shebert G L and Joo Y L 2016 Soft Matter 12 6132
[17] Guo Y Q, Pan J X, Sun M N and Zhang J J 2017 J. Chem. Phys. 146 024902
[18] Ryan K M, Mastroianni A, Stancil K A, Liu H T and Alivisatos A P 2006 Nano Lett. 6 1479
[19] Hu J T, Li L S, Yang W D, Manna L, Wang L W and Alivisatos A P 2001 Science 5524 2060
[20] Zhang S, Feng Y, Ning N Y, Zhang L Q, Tian M and Mi J G 2017 Comput. Mater. Sci. 129 107
[21] Thorkelsson K, Bronstein N and Xu T 2016 Macromolecules 49 6669
[22] Ting C L, Composto R J and Frischknecht A L 2016 Macromolecules 49 1111
[23] Hore M J A and Composto R J 2013 Macromolecules 47 875
[24] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 5564 2425
[25] White S I, Mutiso R M, Vora P M, Jahnke D, Hsu S, Kikkawa J M, Li J, Fischer J E and Winey K I 2010 Adv. Funct. Mater. 20 2709
[26] White S I, DiDonna B A, Mu M, Lubensky T C and Winey K I 2009 Phys. Rev. B 79 024301
[27] Mutiso R M, Sherrott M C, Li J and Winey K I 2012 Phys. Rev. B 86 214306
[28] Mutiso R M, Sherrott M C, Rathmell A R, Wiley B J and Winey K I 2013 ACS Nano 7 7654
[29] Peng G, Qiu F, Ginzburg V V, Jasnow D and Balazs A C 2000 Science 288 1802
[30] Chen K and Ma Y Q 2002 Phys. Rev. E 65 041501
[31] Chen K and Ma Y Q 2002 J. Chem. Phys. 116 7783
[32] He Li L, Zhang L X, Chen H P and Liang H J 2009 Polymer 50 3403
[33] Thorkelsson K, Mastroianni A J, Ercius P and Xu T 2011 Nano Lett. 12 498
[34] Wu K H and Lu S Y 2006 Macromol. Rapid Commun. 27 424
[35] Modestino M A, Chan E R, Hexemer A, Urban J J and Segalman R A 2011 Macromolecules 44 7364
[36] Jiang G Q, Hore M J A, Gam S and Composto R J 2012 ACS Nano 6 1578
[37] Rasin B, Chao H K, Jiang G Q, Riggleman R A and Composto R J 2016 Soft Matter 12 2177
[38] Ploshnik E, Salant A, Banin U and Shenhar R 2010 Adv. Mater. 22 2774
[39] Ploshnik E, Salant A, Banin U and Shenhar R 2010 Phys. Chem. Chem. Phys. 12 11885
[40] Deshmukh R D, Liu Y and Composto R J 2007 Nano Lett. 7 3662
[41] Zhang Q L, Gupta S, Emrick T and Russell T P 2006 J. Am. Chem. Soc. 128 3898
[42] Frischknecht A L, Hore M J A, Ford J and Composto R J 2013 Macromolecules 46 2856
[43] Thorkelsson K, Nelson J H, Alivisatos A P and Xu T 2013 Nano Lett. 13 4908
[44] Lai F Y, Borca T T and Plawsky J 2015 Nanotechnology 26 055301
[45] Modestino M A, Chan E R, Hexemer A, Urban J J and Segalman R A 2011 Macromolecules 44 7364
[46] Chakraborty S and Roy S 2015 J. Phys. Chem. B 119 6803
[47] Horsch M A, Zhang Z L and Glotzer S C 2006 J. Chem. Phys. 125 184903
[48] Park J H, Kalra V and Joo Y L 2014 J. Chem. Phys. 140 124903
[49] Chai A H, Zhang D, Jiang Y W, He L L and Zhang L X 2013 J. Chem. Phys. 139 104901
[50] Yang Z, Ping L X and Xuan Z Q 2011 Polymer 52 6110
[51] He L L, Zhang L X, Xia A and Liang H J 2009 J. Chem. Phys. 130 144907
[52] He L L, Zhang L X and Liang H J 2010 Polymer 51 3303
[53] Tang Q and Ma Y Q 2009 J. Phys. Chem. B 113 10117
[54] Zhou Y, Long X. P and Zeng Q X 2011 Polymer 26 6110
[55] Ma X, Yang Y Z, Zhu L, Zhao B, Tang P and Qiu F 2013 J. Chem. Phys. 139 214902
[56] Sides S W, Kim B J, Kramer E J and Frederickson G H 2006 Phys. Rev. Lett. 96 250601
[57] Park J H, Yin J, Kalra V and Joo Y L 2014 J. Phys. Chem. C 118 7653
[58] Wang K, Jin S M, Xu J P, Liang R J, Shezad K, Xue Z G, Xie X L, Lee E and Zhu J T 2016 ACS Nano 10 4954
[59] Cheng M H, Hsu Y C, Chang C W, Ko H W, Chung P Y and Chen J T 2017 ACS Applied Materials Interfaces 9 21010
[60] He L L, Li S B and Zhang L X 2013 J. Appl. Polym. Sci. 127 4470
[61] Chakraborty S and Roy S 2015 J. Phys. Chem. B 119 6803
[62] Li S B, Chen P, Wang X H, Zhang L X and Liang H J 2009 J. Chem. Phys. 130 014902
[63] Hall L M, Jayaraman A and Schweizer K S 2010 Curr. Opin. Solid State Mater. Sci. 14 38
[64] Chen K, Li H S, Zhang B K, Li J and Tian W D 2016 Sci. Rep. 6 20355
[65] Zhang J, Kong W and Duan H 2017 Langmuir 33 3123
[66] Zhang L C, Sun M N, Pan J X, Wang F B, Zhang J J and Wu H S 2013 Chin. Phys. B 22 096401
[67] Pinna M, Zvelindovsky A V, Todd S and Goldbeck W G 2006 J. Chem. Phys. 125 154905
[68] Pinna M and Zvelindovsky A V 2012 Eur. Phys. J. B 85 210
[69] Yan L T, Schoberth H G and Boker A 2009 Macromol. Chem. Phys. 210 1003
[70] Ito A 1998 Phys. Rev. E 58 6158
[71] Ohta T and Ito A 1995 Phys. Rev. E 52 5250
[72] Ren S R, Hamley I W, Teixeira P I C and Olmsted P D 2001 Phys. Rev. E 63 041503
[73] Ohta T and Kawasaki K 1986 Macromolecules 19 2621
[74] Huo Y, Zhang H and Yang Y 2003 Macromolecules 36 5383
[75] Veysey Ⅱ J, Fouke B W, Kandianis M T, Schickel T J, Johnson R W and Goldenfeld N 2008 J. Sediment. Res. 78 69
[76] Veysey Ⅱ J and Goldenfeld N 2008 Nature 4 310
[77] Wang D, Shi T, Chen J, An L J and Jia Y X 2008 Chem. Phys. 129 194903
[78] Zhou D, Shi A C and Zhang P 2008 J. Chem. Phys. 129 154901
[79] Teixeira P I C and Mulder B M 1996 Phys. Rev. E 53 1805
[80] Ginzburg V V, Qiu F, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Phys. Rev. Lett. 82 4026
[81] Qiu F, Ginzburg V V, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Langmuir 15 4952
[82] Buxton G A and Balazs A C 2004 Mol. Simul. 30 249
[83] Ito A 1998 Phys. Rev. E 58 6158
[84] Liu B, Tong C H and Yang Y L 2001 J. Phys. Chem. B 105 10091
[85] Tong C and Yang Y 2002 J. Chem. Phys. 116 1519
[86] Oono Y and Bahiana M 1988 Phys. Rev. Lett. 61 1109
[87] Bates F S and Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525
[88] Chakrabarti A and Gunton J D 1993 Phys. Rev. E 47 792
[89] Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836
[90] Puri S and Oono Y 1988 Phys. Rev. A 38 1542
[91] Oono Y and Puri S 1988 Phys. Rev. A 38 434
[92] Bahiana M and Oono Y 1990 Phys. Rev. A 41 6763
[1] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[2] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[5] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[6] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[7] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[8] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[9] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[10] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[11] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[12] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[13] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[14] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[15] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
No Suggested Reading articles found!