INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Phase transition of asymmetric diblock copolymer induced by nanorods of different properties |
Yu-Qi Guo(郭宇琦)† |
1 Department of Chemistry and Chemical Engineering, Lvliang University, Lishi 033000, China |
|
|
Abstract We investigate the microphase transition of asymmetric diblock copolymer induced by nanorods of different properties using cell dynamics simulation and Brown dynamics. The results show the phase diagram and representative nanostructures of the diblock copolymer nanocomposite. Various structures such as sea-island structure (SI), sea-island and lamellar structure (SI-L), and lamellar structure (L) are observed in the phase diagram. The system undergoes phase transition from SI-L to SI or from L to SI with increasing length of A-like sites for all numbers of nanorods except 10 and 300, and from SI to L with increasing number of nanorods for all lengths of A-like sites. Notably, the polymer system transforms from a tilted layered structure to a parallel lamellar, perpendicular lamellar, and subsequently sea-island structure with increasing length of A-like sites for a rod number of 240. To gain more detailed insight into these structural formation mechanisms, we analyze the evolution kinetics of the system with various lengths of A-like sites of the rods. The pattern evolution and domain growth of the ordered parallel/perpendicular lamellar structure are also investigated. Furthermore, the effects of the wetting strength, rod-rod interaction, polymerization degree, and length of nanorods on the self-assembled structure of asymmetric diblock copolymer/nanorods are studied. Our simulations provide theoretical guidance on the construction of complex-assembled structures and the design of novel functional materials.
|
Received: 07 August 2020
Revised: 12 November 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
83.10Tv
|
|
|
83.80.Tc
|
(Polymer blends)
|
|
62.23.St
|
(Complex nanostructures, including patterned or assembled structures)
|
|
64.75.Jk
|
(Phase separation and segregation in nanoscale systems)
|
|
Fund: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0957), the Key Research and Development Project of the Introduction of High-Level Scientific and Technological Talents in Lvliang (Grant No. 201701102), and the Shanxi Provincial Natural Science Foundation, China (Grant No. 201801D221109). |
Corresponding Authors:
†Corresponding author. E-mail: guoyuqi1988@sina.cn
|
Cite this article:
Yu-Qi Guo(郭宇琦) Phase transition of asymmetric diblock copolymer induced by nanorods of different properties 2021 Chin. Phys. B 30 048301
|
1 Peng G W, Qiu F, Ginzburg V V, Jasnow D and Balazs A C 2000 Science 288 1802 2 Chen K and Ma Y Q 2002 Phys. Rev. E 65 041501 3 Chen K and Ma Y Q 2002 J. Chem. Phys. 116 7783 4 He L L, Zhang L X, Xia A and Liang H J 2009 J. Chem. Phys. 130 144907 5 He L L, Zhang L X, Chen H P and Liang H J 2009 Polymer 50 3403 6 He L L, Zhang L X and Liang H J 2010 Polymer 51 3303 7 Chakraborty S and Roy S 2015 J. Phys. Chem. B 119 6803 8 Zhou Y X, Huang M X, Lu T and Guo H X 2017 Macromolecules 51 3135 9 Tang Q Y and Ma Y Q 2009 J. Phys. Chem. B 113 10117 10 Yan L T and Balazs A C 2011 J. Mater. Chem. 21 14178 11 Yan L T, Maresov E, Buxton G A and Balazs A C 2011 Soft Matter 7 595 12 Zhang D, Cheng J, Jiang Y W, Wen X H and Zhang L X 2013 J. Polym. Sci. Part B: Polym. Phys. 51 392 13 Park J H and Joo Y L 2014 Phys. Chem. Chem. Phys. 16 8865 14 Gao Y Y, Liu J, Shen J X, Zhang L Q and Cao D P 2014 Polymer 55 1273 15 Chao H, Lindsay B J and Riggleman R A 2017 J. Phys. Chem. B 121 11198 16 Osipov M A, Ushakova A S and Gorkunov M V 2017 Liq. Cryst. 44 1861 17 Osipov M A, Kudryavtsev Y V, Ushakova A S and Berezkin A V 2018 Liq. Cryst. 45 2065 18 Karatrantos A, Composto R J, Winey K I and Clarke N 2019 Macromolecules 52 2513 19 He L L, Zhang R F and Ji Y Y 2012 Chin. Phys. B 21 088301 20 Wang X H, Li S B, Zhang L X and Liang H J 2011 Chin. Phys. B 20 083601 21 Zhang Q L, Gupta S, Emrick T and Russell T P 2006 J. Am. Chem. Soc. 128 3898 22 Ploshnik E, Salant A, Banin U and Shenhar R 2010 Phys. Chem. Chem. Phys. 12 11885 23 Deshmukh R D, Liu Y and Composto R J 2007 Nano Lett. 7 3662 24 Nepal D, Onses M S, Park K, Jespersen M, Thode C J, Nealey P F and Vaia R A 2012 ACS Nano 6 5693 25 Thorkelsson K, Mastroianni A J, Ercius P and Xu T 2012 Nano Lett. 12 498 26 Thorkelsson K, Nelson J H, Alivisatos A P and Xu T 2013 Nano Lett. 13 4908 27 Lai F Y, Tasciuc T B and Plawsky J 2015 Nanotechnology 26 055301 28 Krook N M, Ford J, Marechal M, Rannou P, Murray C B and Composto R J 2018 ACS Macro. Lett. 7 1400 29 Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I and Shenhar R 2020 Macromolecules 53 3234 30 Krook N M, Tabedzki C, Elbert K C, Yager K G, Murray C B, Riggleman R A and Composto R J 2019 Macromolecules 52 8989 31 Rasin B, Lindsay B J, Ye X C, Mech J S, Riggleman R A and Composto R J 2020 Soft Matter 16 3005 32 Glor E C, Ferrier R C, Li C, Composto R J and Fakhraai Z 2017 Soft Matter 13 2207 33 Diaz J, Pinna M, Zvelindovsky A V and Pagonabarraga I 2019 Macromolecules 52 8285 34 Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459 35 Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V and Müller A H E 2009 J. Am. Chem. Soc. 131 4720 36 Ruhland T M, Gröschel A H, Walther A and Müller A H E 2011 Langmuir 27 9807 37 Xu K, Guo R H, Dong B J and Yan L T 2012 Soft Matter 8 9581 38 Tripathy M and Schweizer K S 2013 J. Phys. Chem. B 117 373 39 Kharazmi A and Priezjev N V 2017 J. Phys. Chem. B 121 7133 40 Guo Y Q, Pan J X, Sun M N and Zhang J J 2017 J. Chem. Phys. 146 024902 41 Ginzburg V V, Qiu F, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Phys. Rev. Lett. 82 4026 42 Qiu F, Ginzburg V V, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Langmuir 15 4952 43 Buxton G A and Balazs A C 2004 Mol. Simulat. 30 249 44 Balazs A C, Ginzburg V V, Qiu F, Peng G W and Jasnow D 2000 J. Phys. Chem. B 104 3411 45 Geng X B, Pan J X, Zhang J X, Sun M N and Cen J Y 2018 Chin. Phys. B 27 058102 46 Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258 47 Cahn J W 1959 J. Chem. Phys. 30 1121 48 Cahn J W 1961 Acta Metall. 9 795 49 Cahn J W and Hilliard J E 1971 Acta Metall. 19 151 50 Glotzer S C and Coniglio A 1994 Phys. Rev. E 50 4241 51 Glotzer S C, StauKer D and Jan N 1994 Phys. Rev. Lett. 72 4109 52 Glotzer S C, Di Marzio E A and Muthukumar M 1994 Il Nuovo Cimento 16 1171 53 Glotzer S C, Di Marzio E A and Muthukumar M 1995 Phys. Rev. Lett. 74 2034 54 Puri S and Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027 55 Puri S and Frisch H L 1998 Int. J. Mod. Phys. B 12 1623 56 Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J and Wu H S 2013 Chin. Phys. B 22 096401 57 Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. B 22 026401 58 Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. Lett. 30 046401 59 Guo Y Q, Pan J X, Zhang J J, Sun M N, Wang B F and Wu H S 2016 Acta Phys. Sin. 65 056401 (in Chinese) 60 Oono Y and Bahiana M 1988 Phys. Rev. Lett. 61 1109 61 Bates F S and Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525 62 Chakrabarti A and Gunton J D 1993 Phys. Rev. E 47 R792 63 Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836 64 Oono Y and Puri S 1988 Phys. Rev. A 38 434 65 Shinozaki A and Oono Y 1992 Phys. Rev. A 45 R2161 66 Shinozaki A and Oono Y 1993 Phys. Rev. E 48 2622 67 Ohta T and Kawasaki K 1986 Macromolecules 19 2621 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|