Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048301    DOI: 10.1088/1674-1056/abcf3c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase transition of asymmetric diblock copolymer induced by nanorods of different properties

Yu-Qi Guo(郭宇琦)
1 Department of Chemistry and Chemical Engineering, Lvliang University, Lishi 033000, China
Abstract  We investigate the microphase transition of asymmetric diblock copolymer induced by nanorods of different properties using cell dynamics simulation and Brown dynamics. The results show the phase diagram and representative nanostructures of the diblock copolymer nanocomposite. Various structures such as sea-island structure (SI), sea-island and lamellar structure (SI-L), and lamellar structure (L) are observed in the phase diagram. The system undergoes phase transition from SI-L to SI or from L to SI with increasing length of A-like sites for all numbers of nanorods except 10 and 300, and from SI to L with increasing number of nanorods for all lengths of A-like sites. Notably, the polymer system transforms from a tilted layered structure to a parallel lamellar, perpendicular lamellar, and subsequently sea-island structure with increasing length of A-like sites for a rod number of 240. To gain more detailed insight into these structural formation mechanisms, we analyze the evolution kinetics of the system with various lengths of A-like sites of the rods. The pattern evolution and domain growth of the ordered parallel/perpendicular lamellar structure are also investigated. Furthermore, the effects of the wetting strength, rod-rod interaction, polymerization degree, and length of nanorods on the self-assembled structure of asymmetric diblock copolymer/nanorods are studied. Our simulations provide theoretical guidance on the construction of complex-assembled structures and the design of novel functional materials.
Keywords:  self-assemble      block copolymer      nanorods      phase transition  
Received:  07 August 2020      Revised:  12 November 2020      Accepted manuscript online:  01 December 2020
PACS:  83.10Tv  
  83.80.Tc (Polymer blends)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  64.75.Jk (Phase separation and segregation in nanoscale systems)  
Fund: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0957), the Key Research and Development Project of the Introduction of High-Level Scientific and Technological Talents in Lvliang (Grant No. 201701102), and the Shanxi Provincial Natural Science Foundation, China (Grant No. 201801D221109).
Corresponding Authors:  Corresponding author. E-mail: guoyuqi1988@sina.cn   

Cite this article: 

Yu-Qi Guo(郭宇琦) Phase transition of asymmetric diblock copolymer induced by nanorods of different properties 2021 Chin. Phys. B 30 048301

1 Peng G W, Qiu F, Ginzburg V V, Jasnow D and Balazs A C 2000 Science 288 1802
2 Chen K and Ma Y Q 2002 Phys. Rev. E 65 041501
3 Chen K and Ma Y Q 2002 J. Chem. Phys. 116 7783
4 He L L, Zhang L X, Xia A and Liang H J 2009 J. Chem. Phys. 130 144907
5 He L L, Zhang L X, Chen H P and Liang H J 2009 Polymer 50 3403
6 He L L, Zhang L X and Liang H J 2010 Polymer 51 3303
7 Chakraborty S and Roy S 2015 J. Phys. Chem. B 119 6803
8 Zhou Y X, Huang M X, Lu T and Guo H X 2017 Macromolecules 51 3135
9 Tang Q Y and Ma Y Q 2009 J. Phys. Chem. B 113 10117
10 Yan L T and Balazs A C 2011 J. Mater. Chem. 21 14178
11 Yan L T, Maresov E, Buxton G A and Balazs A C 2011 Soft Matter 7 595
12 Zhang D, Cheng J, Jiang Y W, Wen X H and Zhang L X 2013 J. Polym. Sci. Part B: Polym. Phys. 51 392
13 Park J H and Joo Y L 2014 Phys. Chem. Chem. Phys. 16 8865
14 Gao Y Y, Liu J, Shen J X, Zhang L Q and Cao D P 2014 Polymer 55 1273
15 Chao H, Lindsay B J and Riggleman R A 2017 J. Phys. Chem. B 121 11198
16 Osipov M A, Ushakova A S and Gorkunov M V 2017 Liq. Cryst. 44 1861
17 Osipov M A, Kudryavtsev Y V, Ushakova A S and Berezkin A V 2018 Liq. Cryst. 45 2065
18 Karatrantos A, Composto R J, Winey K I and Clarke N 2019 Macromolecules 52 2513
19 He L L, Zhang R F and Ji Y Y 2012 Chin. Phys. B 21 088301
20 Wang X H, Li S B, Zhang L X and Liang H J 2011 Chin. Phys. B 20 083601
21 Zhang Q L, Gupta S, Emrick T and Russell T P 2006 J. Am. Chem. Soc. 128 3898
22 Ploshnik E, Salant A, Banin U and Shenhar R 2010 Phys. Chem. Chem. Phys. 12 11885
23 Deshmukh R D, Liu Y and Composto R J 2007 Nano Lett. 7 3662
24 Nepal D, Onses M S, Park K, Jespersen M, Thode C J, Nealey P F and Vaia R A 2012 ACS Nano 6 5693
25 Thorkelsson K, Mastroianni A J, Ercius P and Xu T 2012 Nano Lett. 12 498
26 Thorkelsson K, Nelson J H, Alivisatos A P and Xu T 2013 Nano Lett. 13 4908
27 Lai F Y, Tasciuc T B and Plawsky J 2015 Nanotechnology 26 055301
28 Krook N M, Ford J, Marechal M, Rannou P, Murray C B and Composto R J 2018 ACS Macro. Lett. 7 1400
29 Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I and Shenhar R 2020 Macromolecules 53 3234
30 Krook N M, Tabedzki C, Elbert K C, Yager K G, Murray C B, Riggleman R A and Composto R J 2019 Macromolecules 52 8989
31 Rasin B, Lindsay B J, Ye X C, Mech J S, Riggleman R A and Composto R J 2020 Soft Matter 16 3005
32 Glor E C, Ferrier R C, Li C, Composto R J and Fakhraai Z 2017 Soft Matter 13 2207
33 Diaz J, Pinna M, Zvelindovsky A V and Pagonabarraga I 2019 Macromolecules 52 8285
34 Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459
35 Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V and Müller A H E 2009 J. Am. Chem. Soc. 131 4720
36 Ruhland T M, Gröschel A H, Walther A and Müller A H E 2011 Langmuir 27 9807
37 Xu K, Guo R H, Dong B J and Yan L T 2012 Soft Matter 8 9581
38 Tripathy M and Schweizer K S 2013 J. Phys. Chem. B 117 373
39 Kharazmi A and Priezjev N V 2017 J. Phys. Chem. B 121 7133
40 Guo Y Q, Pan J X, Sun M N and Zhang J J 2017 J. Chem. Phys. 146 024902
41 Ginzburg V V, Qiu F, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Phys. Rev. Lett. 82 4026
42 Qiu F, Ginzburg V V, Paniconi M, Peng G W, Jasnow D and Balazs A C 1999 Langmuir 15 4952
43 Buxton G A and Balazs A C 2004 Mol. Simulat. 30 249
44 Balazs A C, Ginzburg V V, Qiu F, Peng G W and Jasnow D 2000 J. Phys. Chem. B 104 3411
45 Geng X B, Pan J X, Zhang J X, Sun M N and Cen J Y 2018 Chin. Phys. B 27 058102
46 Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
47 Cahn J W 1959 J. Chem. Phys. 30 1121
48 Cahn J W 1961 Acta Metall. 9 795
49 Cahn J W and Hilliard J E 1971 Acta Metall. 19 151
50 Glotzer S C and Coniglio A 1994 Phys. Rev. E 50 4241
51 Glotzer S C, StauKer D and Jan N 1994 Phys. Rev. Lett. 72 4109
52 Glotzer S C, Di Marzio E A and Muthukumar M 1994 Il Nuovo Cimento 16 1171
53 Glotzer S C, Di Marzio E A and Muthukumar M 1995 Phys. Rev. Lett. 74 2034
54 Puri S and Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027
55 Puri S and Frisch H L 1998 Int. J. Mod. Phys. B 12 1623
56 Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J and Wu H S 2013 Chin. Phys. B 22 096401
57 Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. B 22 026401
58 Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. Lett. 30 046401
59 Guo Y Q, Pan J X, Zhang J J, Sun M N, Wang B F and Wu H S 2016 Acta Phys. Sin. 65 056401 (in Chinese)
60 Oono Y and Bahiana M 1988 Phys. Rev. Lett. 61 1109
61 Bates F S and Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525
62 Chakrabarti A and Gunton J D 1993 Phys. Rev. E 47 R792
63 Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836
64 Oono Y and Puri S 1988 Phys. Rev. A 38 434
65 Shinozaki A and Oono Y 1992 Phys. Rev. A 45 R2161
66 Shinozaki A and Oono Y 1993 Phys. Rev. E 48 2622
67 Ohta T and Kawasaki K 1986 Macromolecules 19 2621
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!