Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096201    DOI: 10.1088/1674-1056/abf10a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires

Meng-Jia Su(宿梦嘉)1,2, Qiong Deng(邓琼)1,2,†, Lan-Ting Liu(刘兰亭)1,2, Lian-Yang Chen(陈连阳)1,2, Meng-Long Su(宿梦龙)3, and Min-Rong An(安敏荣)4,‡
1 Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3 1001 Factory of the Chinese People's Liberation Army, Xi'an 710119, China;
4 College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract  Novel properties and applications of multilayered nanowires (MNWs) urge researchers to understand their mechanical behaviors comprehensively. Using the molecular dynamic simulation, tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values (1.31, 2.34, and 7.17 nm) and strain rates (1.0×108 s-1≤$\dot \varepsilon$≤ 5.0×1010 s-1). The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate. Four distinct strain rate regions in the tensile process can be discovered, which are small, intermediate, critical, and large strain rate regions. As the strain rate increases, the initial plastic behaviors transform from interface shear (the shortest sample) and grain reorientation (the longest sample) in small strain rate region to amorphization of crystalline structures (all samples) in large strain rate region. Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region, and only related to collapse of crystalline atoms in high strain rate region. A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires. The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs, but barely affect the plastic deformation mechanisms of the materials. The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs.
Keywords:  molecular dynamics      Ti/Ni multilayered nanowires      coupled layer thickness-strain rate effect      plastic deformation mechanisms  
Received:  09 December 2020      Revised:  11 March 2021      Accepted manuscript online:  23 March 2021
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  81.07.Gf (Nanowires)  
  62.20.-x (Mechanical properties of solids)  
  81.40.Lm (Deformation, plasticity, and creep)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-827), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 19JK0672).
Corresponding Authors:  Qiong Deng, Min-Rong An     E-mail:  dengqiong24@nwpu.edu.cn;amr_lr@163.com

Cite this article: 

Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣) Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires 2021 Chin. Phys. B 30 096201

[1] Sofiah A G N, Samykano M, Kadirgama K, Mohan R V and Lah N A C 2018 Appl. Mater. Today 11 320
[2] Zhang G W, Yang Z L and Luo G 2016 Chin. Phys. B 25 086203
[3] Pan D, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
[4] Rezaei R and Deng C 2017 Acta Mater. 132 49
[5] Sutrakar V K and Mahapatra D R 2010 Mater. Lett. 64 879
[6] Ni C, Ding H and Jin X J 2016 Comput. Mater. Sci. 111 163
[7] Kim S H, Kim H K, Seo J H, Whang D M, Ahn J P and Lee J C 2018 Acta Mater. 160 14
[8] Wu B, Heidelberg A and Boland J J 2005 Nat. Mater. 4 525
[9] Zhang D F, Breguet J M, Clavel R, Philippe L, Utke I and Michler J 2009 Nanotechnology 20 365706
[10] Lee S, Im J, Yoo Y D, Bitzek E, Kiener D, Richter G, Kim B and Oh S H 2014 Nat. Commun. 5 1
[11] Ni C L, Zhu Q and Wang J W 2018 Mater. Sci. Eng. A 733 164
[12] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[13] Wu H A 2006 Mech. Res. Commun. 33 9
[14] Lao J J, Tam M N, Pinisetty D and Gupta N 2013 JOM 65 175
[15] Wang W D, Yi C L and Ma B Y 2013 Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 227 135
[16] Guder V and Sengul S 2020 Comput. Mater. Sci. 177 109551
[17] Sainath G and Choudhary B K 2015 Mater. Sci. Eng. A 640 98
[18] Zhou X L, Zhou H F, Li X Y and Chen C Q 2015 J. Mech. Phys. Solids 84 130
[19] Park H S, Cai W, Espinosa H D and Huang H C 2009 MRS Bull. 34 178
[20] Wang W D, Yi C L and Fan K Q 2013 T. Nonferr. Metal Soc. 23 3353
[21] Chang L, Zhou C Y, Wen L L, Li J and He X H 2017 Comput. Mater. Sci. 128 348
[22] Chang L, Zhou C Y, Pan X M and He X H 2017 Mater. Des. 134 320
[23] Xie H X, Yu T, Fang W, Yin F X and Khan D F 2016 Chin. Phys. B 25 126201
[24] Yuan F P and Wu X L 2012 J. Appl. Phys. 111 124313
[25] An M R, Deng Q, Su M J, Song H Y and Li Y L 2017 Mater. Sci. Eng. A 684 491
[26] Su M J, Deng Q, An M R, Liu L T and Ma C B 2019 Comput. Mater. Sci. 158 149
[27] Fan Q, Xu J G, Song H Y and Zhang Y G 2015 Acta Phys. Sin. 64 016201 (in Chinese)
[28] Liu L T, Deng Q, Su M J, An M R and Wang R F 2019 Superlattices Micros. 135 106272
[29] Zhou Y and Wang J J 2016 J. Mech. Phys. Solids 88 72
[30] Wadley H N G, Zhou X W, Johnson R A and Neurock M 2001 Prog. Mater. Sci. 46 329
[31] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smith G D W, Clifton P H, Martens R L and Kelly T F 2001 Acta Mater. 49 4005
[32] Tian Y Y, Li J, Hu Z Y, Wang Z P and Fang Q H 2017 Chin. Phys. B 26 126802
[33] Yang M, Xu J G, Song H Y and Zhang Y G 2015 Chin. Phys. B 24 096202
[34] Cheung K S and Yip S 1991 J. Appl. Phys. 70 5688
[35] Faken D and Jónsson H 1994 Comput. Mater. Sci. 2 279
[36] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[37] An M R, Su M J, Deng Q, Song H Y and Shang Y 2020 Chin. Phys. B 29 046201
[38] Su M J, Deng Q, An M R and Liu L T 2020 Chin. Phys. B 29 116201
[39] Wang J Y, Song H Y, An M R, Deng Q and Li Y L 2020 Chin. Phys. B 29 066201
[40] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C L, Sun J and Ma E 2014 Nat. Commun. 5 1
[41] Sun Q, Zhang X Y, Ren Y, Tu J and Liu Q 2014 Scr. Mater. 90 41
[42] Chen P, Wang F X and Li B 2019 Acta Mater. 171 65
[43] Ma E 2013 Scr. Mater. 49 941
[44] Chen M W, McCauley J W and Hemker K J 2003 Science 299 1563
[45] Song H Y, Xu J J, Zhang Y G, Li S, Wang D H and Li Y L 2017 Mater. Des. 127 173
[46] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J and Sun J 2011 Acta Mater. 59 7368
[47] Zhou H R, Chang L, Fu K K, Huang H, Niu R M, Liao X Z, Sheppard L, George L and Martinu L 2020 Surf. Coat. Technol. 404 126461
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!