Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048201    DOI: 10.1088/1674-1056/ac2728

Thermodynamically consistent model for diblock copolymer melts coupled with an electric field

Xiaowen Shen(沈晓文)1,2 and Qi Wang(王奇)3,†
1 School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
Abstract  We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory. We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.
Keywords:  thermodynamical consistency      diblock copolymer melts      electric field      phase field model  
Received:  26 May 2021      Revised:  03 September 2021      Accepted manuscript online:  16 September 2021
PACS:  82.35.Jk (Copolymers, phase transitions, structure)  
  82.60.Lf (Thermodynamics of solutions)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  64.70.qd (Thermodynamics and statistical mechanics)  
Fund: Xiaowen Shen's research is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971051 and U1930402). Qi Wang's research is partially supported by National Science Foundation grants (award DMS-1815921, 1954532 and OIA-1655740) and a GEAR award from SC EPSCoR/IDeA Program.
Corresponding Authors:  Qi Wang     E-mail:

Cite this article: 

Xiaowen Shen(沈晓文) and Qi Wang(王奇) Thermodynamically consistent model for diblock copolymer melts coupled with an electric field 2022 Chin. Phys. B 31 048201

[1] Parka C, Yoonb J and Thomas E L 2003 Polymer 44 6725
[2] Liu M J, Li S B, Zhang L X and Wang X H 2010 Chin. Phys. B 19 028101
[3] Zhang X M, Shen B F, Zhang L G and Shi Y 2021 High Power Laser Science and Engineering 9 e28
[4] Geng X B, Pan J X, Zhang J J, Sun M N and Cen J Y 2013 Chin. Phys. B 27 058102
[5] Feng H B, Lu X Y, Wang W Y, Kang N G and Mays J W 2017 Polymer 9 494
[6] Ohta T and Kawasaki K 1986 Macromolecules 19 2621
[7] Ohta T and Nonomura M 1998 Eur. Phys. J. B 2 57
[8] Choksi R and Ren X F 2003 J. Stat. Phys. 113 151
[9] Choksi R and Ren X F 2005 Physica D 203 100-119
[10] Pestera C W, Liedel C, Ruppel M and Böker A 2017 Prog. Polym. Sci. 64 182
[11] Faghihi N, Mkhonta S, Elder K R and Grant M 2018 Eur. Phys. J. B 91 55
[12] Kyrylyuk A V, Sevink G J A, Zvelindovsky A V and Fraaije J G E M 2003 Macromol. Theory Simul. 12 508
[13] Lyakhova K S, Zvelindovsky A V and Sevink G J A 2004 AIP Conf. Proc. 708 217
[14] Borja L J, Zurch M, Pemmaraju C D, Schultze M, Ramasesha K, Gandman A, Prell J S, Prendergast D, Neumark D M and Leone S R 2016 United States
[15] Lyakhova K S, Zvelindovsky A V and Sevink G J A 2006 Macromolecules 39 3024
[16] Schmidt K, Schoberth H G, Schubert F, Hänsel H,Fischer F, Weiss T M, Sevink G J A, Zvelindovsky A V, Böker A and Krausch G 2007 Soft Matter 3 448
[17] Ly D Q, Honda T, Kawakatsu T and Zvelindovsky A V 2007 Macromolecules 40 2928
[18] Ly D Q, Honda T, Kawakatsu T and Zvelindovsky A V 2008 Macromolecules 41 4501
[19] Wu X F and Dzenis Y A 2008 Phys. Rev. E 77 031807
[20] Ding Y, Yang Q, Guo X, Wang S S, Gu F X, Fu J, Wan Q, Cheng J P and Tong L M 2009 Opt. Express 17 21813
[21] Sevink G J A, Pinna M, Langner K M and Zvelindovsky A V 2011 Soft Matter 7 5161
[22] Ly D Q, Pinna M, Honda T, Kawakatsu T and Zvelindovsky A V 2013 J. Chem. Phys. 138 074904
[23] Orizaga S and Glasner K 2016 Phys. Rev. E 93 052504
[24] Cheng Q, Yang X F and Shen J 2017 J. Comput. Phys. 341 44
[25] Chen C J, Li X, Zhang J and Yang X F 2021 Appl. Math. Comput. 388 125463
[26] Zhang J, Chen C J, Yang X F and Pan K J 2020 J. Comput. Appl. Math. 378 112905
[27] Böker A, Elbs H, Hänsel H, Knoll A, Ludwigs S, Zettl H, Zvelindovsky A V, Sevink G J A, Urban V, Abetz V, Müller A H E and Krausch G 2003 Macromolecules 36 8078
[28] Xu T, Zvelindovsky A V, Sevink G J A, Gang O, Ocko B, Zhu Y Q, Gido S P and Russell T P 2004 Macromolecules 37 6980
[29] Onsager L 1931 Phys. Rev. 37 405
[30] Onsager L 1931 Phys. Rev. 38 2265
[31] Onsager L and Machlup S 1953 Phys. Rev. 91 1505
[32] Yang X G, Li J, Forest M G and Wang Q 2016 Entropy 18 202
[33] Wang Q 2021 Frontiers and progress of current soft matter research (Singapore:Springer Nature) pp. 101-132
[34] Landau L D and Lifshitz E M 1984 Electrodynamics of continuous media, 2nd edn. (Pergamon:Elsevier) pp. 34-85
[35] Yang X F and Zhao J 2019 Comm. Comp. Phys. 25 703
[36] Zhao J, Yang X F, Gong Y Z, Zhao X P, Yang X G, Li J and Wang Q 2018 Int. J. Numer. Anal. Mod. 15 884
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[7] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[8] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[9] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[10] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[11] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[12] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[13] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[14] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[15] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
No Suggested Reading articles found!