Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066802    DOI: 10.1088/1674-1056/ab889e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics

Guoyu Xian(冼国裕)1,2, Jianshuo Zhang(张建烁)2,3, Li Liu(刘丽)1, Jun Zhou(周俊)2, Hongtao Liu(刘洪涛)2, Lihong Bao(鲍丽宏)2, Chengmin Shen(申承民)2, Yongfeng Li(李永峰)3, Zhihui Qin(秦志辉)1, Haitao Yang(杨海涛)2
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
Abstract  Few-layer two-dimensional (2D) semiconductor nanosheets with a layer-dependent band gap are attractive building blocks for large-area thin-film electronics. A general approach is developed to fast prepare uniform and phase-pure 2H-WSe2 semiconducting nanosheets at a large scale, which involves the supercritical carbon dioxide (SC-CO2) treatment and a mild sonication-assisted exfoliation process in aqueous solution. The as-prepared 2H-WSe2 nanosheets preserve the intrinsic physical properties and intact crystal structures, as confirmed by Raman, x-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscope (STEM). The uniform 2H-WSe2 nanosheets can disperse well in water for over six months. Such good dispersivity and uniformity enable these nanosheets to self-assembly into thickness-controlled thin films for scalable fabrication of large-area arrays of thin-film electronics. The electronic transport and photoelectronic properties of the field-effect transistor based on the self-assembly 2H-WSe2 thin film have also been explored.
Keywords:  low dimensional      nanosheets      self-assembly      electronics  
Received:  27 March 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  62.23.Kn (Nanosheets)  
  81.16.Dn (Self-assembly)  
  77.55.df (For silicon electronics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771224, 51772087, and 51471185), the National Key R&D Program of China (Grant Nos. 2016YFJC020013 and 2018FYA0305800), and Fujian Institute of Innovation, Chinese Academy of Sciences.
Corresponding Authors:  Haitao Yang, Zhihui Qin     E-mail:  htyang@iphy.ac.cn;zhqin@hnu.edu.cn

Cite this article: 

Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛) Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics 2020 Chin. Phys. B 29 066802

[1] Wang Y, Kim J C, Wu R J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y and Chhowalla M 2019 Nature 568 70
[2] Lien D H, Uddin S Z, Yeh M, Amani M, Kim H, Ager III J W, Yablonovitch E and Javey A 2019 Science 364 468
[3] Meng X, Yu L, Ma C, Nan B, Si R, Tu Y, Deng J, Deng D and Bao X 2019 Nano Energy 61 611
[4] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V and Coleman J N 2011 Adv. Mater. 23 3944
[5] Omelianovych A Y, Dominskiy D I, Feldman E V, Bessonov A A, Stevenson K J and Paraschuk D Y 2017 J. Mater. Sci.: Mater. Electron. 28 18106
[6] Li L, Guo Y, Sun Y, Yang L, Qiu L, Guan S, Wang J, Qiu X, Li H, Shang Y and Fang Y 2018 Adv. Mater. 30 1706215
[7] Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S and He J 2018 Nanoscale 10 20171
[8] Yin J, Zhu F, Lai J, Chen H, Zhang M, Zhang J, Wang J, He T, Zhang B, Yuan J, Yan P and Ruan S 2019 Adv. Opt. Mater. 7 1801303
[9] Xia J, Chao D, Chen Z, Liu Z, Kuo J, Yan J and Shen Z X 2017 Nanoscale 9 7533
[10] Kim T, Kim J, Park I, Cho K and Choi S 2019 2D Mater. 6 025025
[11] Shen J, He Y, Wu J, Gao C, Keyshar K, Zhang X, Yang Y, Ye M, Vajtai R, Lou J and Ajayan P M 2015 Nano Lett. 15 5449
[12] Shen J, Wu J, Dong M, Xu P, Li J, Zhang X, X, Yuan J, Wang X, Ye M, Vajtai R, Lou J and Ajayan P M 2016 Small 12 2741
[13] Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y and Duan X 2018 Nature 562 254
[14] Pu N W, Wang C A, Sung Y, Liu Y M and Ger M D 2009 Mater. Lett. 63 1987
[15] Wang Y, Chen Z, Wu Z, Li Y, Yang W and Li Y 2018 Langmuir 34 7797
[16] Rizvi R, Nguyen E P, Kowal M D, Mak W H, Rasel S, Islam M A, Abdelaal A, Joshi A S, Zekriardehani S, Coleman M R and Kaner R B 2018 Adv. Mater. 30 1800200
[17] Qi Y, Xu Q, Wang Y, Yan B, Ren Y and Chen Z 2016 ACS Nano 10 2903
[18] Zheng J, Zhang H, Dong S, Liu Y, Nai C T, Shin H S, Jeong H Y, Liu B and Loh K P 2014 Nat. Commun. 5 2995
[19] Tian X, Wu J, Li Q, Li Y, Chen Z, Tang Y and Li Y 2018 J. Mater. Sci. 53 7258
[20] Qiao W, Yan S M, He X M, Song X Y, Li Z W, Zhang X, Zhong W and Du Y W 2014 RSC Adv. 4 50981
[21] Li H, Lu G, Wang Y, Yun Z, Cong C, He Q, Wang L, Ding F, Yu T and Zhang H 2013 Small 9 1974
[22] Yu X, Prévot M S, Guijarro N and Sivula K 2015 Nat. Commun. 6 7596
[23] Lei W J, Xu J J, Yu Y S, Yang W W, Hou Y L and Chen D F 2018 Nano Lett. 18 7839
[24] Yang W W, Yu Y S, Wang L, Yang C H and Li H B 2015 Nanoscale 7 2877
[25] Kelly A G et al All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. 2017 Science 356 69
[26] Gong Y Y, Zhang X T, Redwing J M and Jackson T N 2016 J. Elec. Mater. 45 6280
[27] Zhang W J, Chiu M H, Chen C H, Chen W, Li L J and Wee A T 2014 ACS Nano 8 8653
[28] Cheng F, He B 2016 Chin. Phys. Lett. 33 57301
[1] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[4] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[5] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[6] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[7] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[8] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[9] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[10] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[11] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[12] Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets
Nguyen Manh Hung, Le Thi Mai Oanh, Lam Thi Hang, Pham Do Chung, Pham Thi Duyen, Dao Viet Thang, Nguyen Van Minh. Chin. Phys. B, 2020, 29(5): 057801.
[13] Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2020, 29(11): 113101.
[14] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[15] Plasmon reflection reveals local electronic properties of natural graphene wrinkles
Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁). Chin. Phys. B, 2019, 28(11): 117302.
No Suggested Reading articles found!