|
|
Lithium ion batteries cathode material: V2O5 |
Baohe Yuan(袁保合)†, Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露)‡ |
North China University of Water Resources and Electric Power, Zhengzhou 450011, China |
|
|
Abstract Among all the known electrode materials, vanadium pentoxide (V2O5) has high reversible capacity. It is a very valuable material for research of the complexity, rich structure and morphology. However, it also has some disadvantages, such as poor cycle stability, low discharge voltage, low conductivity and Li+ diffusion coefficient. In this regard, researchers have carried out a lot of research, such as using various methods to improve the nanostructures, introducing heterostructures, introducing point defects or cation doping in the crystal structure, etc. The electrochemical performance of V2O5 has been significantly improved in reversible capacity, high-rate capacity and long-term cycle stability. In this paper, V2O5 based nanostructure with different chemical composition are briefly introduced, and it covers V2O5 nanomaterials with different morphology, including 1D nanorods, nanobelts, nanotubes, 2D leaf like nanosheets and other nanosheets, and 3D hollow structures, porous nanostructures, porous eggshell microsphere structures. The composite nanomaterials of V2O5 and different carbonaceous supports are also introduced. Finally, the V2O5 composite materials doped with cations are discussed. The electrochemical performance of V2O5 based electrode can be improved effectively by obtaining appropriate nanostructure and optimized chemical composition.
|
Received: 10 July 2021
Revised: 19 August 2021
Accepted manuscript online: 27 August 2021
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
65.40.gk
|
(Electrochemical properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702097 and U1804125) and the Key Scientific and Technological Research Projects of Henan Province, China (Grant No. 202102210222). |
Corresponding Authors:
Baohe Yuan, Lulu Chen
E-mail: yuanbaohe@ncwu.edu.cn;chenlulu@ncwu.edu.cn
|
Cite this article:
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露) Lithium ion batteries cathode material: V2O5 2022 Chin. Phys. B 31 038203
|
[1] Li Z, Moreau L and Arking A 2010 Bull Am. Meteorol Soc. 78 53 [2] Lin Y, Li Y and Zhan X 2012 Chem. Soc. Rev. 41 4245 [3] Garg S, Jain A K, Yang S, et al. 2020 Eur. Phys. J. Spec. Top. 229 2527 [4] Wu J, Tan Z, Wang K Liang Y and Zhou J H 2021 Sustainability 13 3098 [5] Jung J, Jung S, Lee J, Lee M and Kim H S 2021 Energies 14 3001 [6] Sutrisno D, Rahadiati A, Rudiastuti A W, Dewi R S and Munawaroh 2020 ISPRS Int. J. Geo-Inf. 9 525 [7] Lund J W, Freestod D H and Boyd T L 2011 Geothermics 40 159 [8] Mathew V, Kim S, Kang J, Gim J, Song J, Baboo J, Park W, Ahn D, Han J, Gu L, Wang Y, Hu Y, Sun Y and Kim J 2014 NPG Asia Mater. 6 138 [9] Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M and Schmuch R 2021 Nat. Energy 6 123 [10] Goriparti S, Miele E, Angelis F D, Fabrizio E D, Zaccaria R P and Capiglia C 2014 J. Power Sources 257 421 [11] Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z and Cho J 2017 Adv. Energy Mater. 7 1601507 [12] Ryu H H, Park G T, Yoon C S and Sun Y K 2019 J. Mater. Chem. A 7 18580 [13] Lai F, Zhang X, Wang H, Hu S, Wu X, Wu Q, Huang Y, He Z and Li Q 2016 ACS Appl. Mater. 8 21656 [14] Chen Y C, Xie K, Pan Y, Zheng C M and Wang H L 2011 Chin. Phys. B 20 28201 [15] Tron A, Yong N J, Si H O, Park Y D and Mun J 2017 ACS Appl. Mater. 9 12391 [16] Wu S L, Zhang W, Song X, Shukla A K, Liu G, Battaglia V and Srinivasan V 2012 J. Electrochem. Soc. 159 A438 [17] Vernardou D, Drosos C, Kafizas A, Pemble M E and Koudoumas E 2020 Molecules 25 5558 [18] Yue Y and Liang H 2017 Adv. Energy Mater. 7 1602545 [19] Pan A Q, Zhang J G, Nie Z, Cao G Z, Bruce W Arey, Li G S, Liang S Q and Liu J 2010 J. Mater. Chem. 20 9193 [20] Rong Y L, Cao Y L, Guo N N, Li Y Z, Jia W and Jia D Z 2016 Electrochim. Acta 222 1691 [21] Jiang H J Chen H, Wei Y H, Zeng J M, Liu H, Zhang Y and Hu H 2019 J. Alloys Compd. 787 625 [22] Rui X, Tang Y, Malyi O I, Gusak A, Zhang Y, Niu Z, Tan H T, Persson C, Chen X, Chen Z and Yan Q 2016 Nano Energy 22 583 [23] Qin M L, Liang Q, Pan A Q, Liang S Q, Zhang Q, Tang Y and Tan X P 2014 J. Power Sources 268 700 [24] Wang S H, Yu T, Li Y Q, Fu H Y and Sun C L 2019 Mater. Res. Bull. 111 284 [25] Wu N T, Du W Z, Liu G L, Zhou Z, Fu H R, Tang Q Q, Liu X M and He Y B 2017 ACS Appl. Mater. Interfaces 9 43681 [26] Wei Q, Xiong F, Tan S, Huang L, Lan E H, Dunn B and Mai L 2017 Adv. Mater. 29 1602300 [27] Li Y W, Yao J H, Evan U, Yang J W, Huang Y X, Zhang M and Cao G Z 2013 Adv. Energy Mater. 3 1171 [28] Peng X, Zhang X M, Wang L, Hu L S, Cheng S H S, Huang C, Gao B, Ma F, Huo K F and Chu P K 2016 Adv. Funct. Mater. 26 784 [29] Rui X H, Lu Z Y, Yu H, Yang D, Hng H H, Lim T M and Yan Q Y 2013 Nanoscale 5 556 [30] Xie C Y, Cheng C J, Yang J G, Hou J K, Liu D Y, Liu S G, Han J, Zhang Y and Xu M W 2016 Ceram. Int. 42 16956 [31] Wang Y, Zhang H J, Siah K W, Wong C C, Lin J Y and Borgna A 2011 J. Mater. Chem. 21 10336 [32] Mai L Q, An Q Y, Wei Q L, Fei J Y, Zhang P F, Xu X, Zhao Y L, Yan M Y, Wen W and Xu L 2014 Small 10 3032 [33] Vu A, Qian Y Q and Stein A 2012 Adv. Energy Mater. 2 1056 [34] Wang Z Y, Zhou L and Lou X W 2012 Adv. Mater. 24 1903 [35] Wang J Y, Tang H G, Zhang L J, Ren H, Yu R B, Jin Q, Qi j, Mao D, Yang M, Wang Y, Liu P R, Zhang Y, Wen Y R, Gu L, Ma G H, Su Z G, Tang Z Y, Zhao H J and Wang D 2016 Nat. Energy 1 2251 [36] Zhang C F, Chen Z X, Guo Z P and Lou X W 2013 Energy Environ. Sci. 6 974 [37] Dou Y F, Liang X, Gao G H and Wu G M 2018 J. Alloys Compd. 735 109 [38] Zhang X Y, Wang J G, Liu H Y, Liu H Z and Wei B Q 2017 Materials 10 77 [39] Lin J, Peng Z W, Xiang C S, Ruan G D, Yan Z, Natelson D and Tour J M 2013 ACS Nano 7 6001 [40] Yang Y, Li L, Fei H L, Peng Z W, Ruan G D and Tour J M 2014 ACS Appl. Mater. Interfaces 6 9590 [41] Liu H M and Yang W S 2011 Energy Environ. Sci. 4 4000 [42] Wu L J, Zhang Y, Fan L S, Zhang Q, Wang P X, Tian D, Zhang N Q and Sun K N 2018 Energy Technol. 6 551 [43] Zeng J, Huang J D, Liu J, Xie T, Peng C Q, Lu Y K, Lu P J, Zhang R Z and Min J 2019 Carbon 154 24 [44] Zhang Y J, Yuan X Y, Lu T, Gong Z W, Pan L K and Guo S W 2021 J. Colloid Interface Sci. 585 347 [45] Sathiya M, Prakash A S, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291 [46] Partheeban T, Kesavan T, Vivekanantha M and Sasidharan M 2019 Appl. Surf. Sci. 493 1106 [47] Cheng J L, Gu G F, Guan Q, Razal J M, Wang Z Y, Li X L and Wang B 2016 J. Mater. Chem. A 4 2729 [48] Yu R X, Zhang C F, Meng Q, Chen Z X, Liu H K and Guo Z P 2013 ACS Appl. Mater. Interfaces 5 12394 [49] Zou R J, Liu Q, He G J, Yuen M F, Xu K B, Hu J Q, Parkin I P, Lee C S and Zhang W J 2017 Adv. Energy Mater. 7 1601363 [50] Brown E, Park S H, Elangovan A, Yuan Y, Kim J, Sun X S, Zhang X M, Wang G and Li J 2018 Electrochim. Acta 269 144 [51] Liang X, Gao G H, Feng S Z, Du Y C and Wu G M 2019 J. Alloys Compd. 772 429 [52] Ihsan M, Meng Q, Li L, Li D, Wang H Q, Seng K H, Chen Z X, Kennedy S J, Guo Z P and Liu H K 2015 Electrochim. Acta. 173 172 [53] Xue C F, Tu B and Zhao D Y 2008 Adv. Funct. Mater. 18 3914 [54] Yao J H, Li Y W, Masse R C, Uchaker E and Cao G Z 2018 Energy Stor. Mater. 11 205 [55] Zhai Y J, Xu L Q and Qian Y T 2016 J. Power Sources 327 423 [56] Kou L Q, Chen F J, Tao F, Dong Y and Chen L 2015 Electrochim. Acta 173 721 [57] Chen P Y, Zheng G T, Guo G Z, Wang Z C, Tang J, Li S, Wen Z S, Ji S J and Sun J C 2019 J. Alloys Compd. 784 574 [58] Zhang H Y, Rong Y L, Jia W, Chai H and Cao Y L 2019 J. Alloys Compd. 802 139 [59] Hu J D, Jia W, Xie J, Cao Y L, Zhang X H and Jia D Z 2018 CrystEngComm 20 6156 [60] Xu H, Xie J, Jia W, Wu G M and Cao Y L 2018 J. Colloid Interface Sci. 516 511 [61] Lu X Y, Jia W, Chai H, Hu J D, Wang S Q and Cao Y L 2019 J. Colloid Interface Sci. 534 322 [62] Ji Y S, Fang D, Wang C, Zhou Z, Luo Z P, Huang J and Yi J H 2018 J. Alloys Compd. 742 567 [63] Zhang X F, Wang K X, Wei X and Chen J S 2011 Chem. Mater. 23 5290 [64] Li H Q, He P, Wang Y G, Hosono E J and Zhou H S 2011 J. Mater. Chem. 21 10999 [65] Liu D, Liu Y, Garcia B B, Zhang Q, Pan A, Jeong Y H and Cao G 2009 J. Mater. Chem. 19 8789 [66] Li Y W, Yao J H, Uchaker E, Zhang M, Tian J J, Liu X Y and Cao G Z 2013 J. Phys. Chem. C 117 23507 [67] Yao J H, Yin Z L, Zou Z G and Li Y W 2017 RSC Adv. 7 32327 [68] Qi Y Y, Qin K Y, Jian Z L, Yang X, Jin W, Tan Y X, Zou Y J and Chen W 2019 J. Mater. Sci. 54 12713 [69] Li S R, Ge S Y, Qiao Y, Chen Y M, Feng X Y, Zhu J F and Chen C H 2012 Electrochim. Acta 64 81 [70] Zhan S Y, Wei Y J, Bie X F, Wang C Z, Du F, Chen G and Hu F 2010 J. Alloys Compd. 502 92 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|