INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method |
Hang Yin(尹航)1,2, Ying Shi(石英)1 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China |
|
|
Abstract Time-dependent density functional theory (TDDFT) method is used to investigate the details of the excited state intramolecular proton transfer (ESIPT) process and the mechanism for temperature effect on the Enol*/Keto* emission ratio for the Me2N-substited flavonoid (MNF) compound. The geometric structures of the S0 and S1 states are denoted as the Enol, Enol*, and Keto*. In addition, the absorption and fluorescence peaks are also calculated. It is noted that the calculated large Stokes shift is in good agreement with the experimental result. Furthermore, our results confirm that the ESIPT process happens upon photoexcitation, which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared (IR) spectra involved in the proton transfer and in the potential energy curves. Besides, the calculations of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S1 state induces the ESIPT. Moreover, the thermodynamic calculation for the MNF shows that the Enol*/Keto* emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.
|
Received: 27 December 2017
Revised: 23 January 2018
Accepted manuscript online:
|
PACS:
|
82.39.Jn
|
(Charge (electron, proton) transfer in biological systems)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
82.20.Db
|
(Transition state theory and statistical theories of rate constants)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No.2013CB922204),the National Natural Science Foundation of China (Grant Nos.11574115 and 11704146),and the Natural Science Foundation of Jilin Province,China (Grant No.20150101063JC). |
Corresponding Authors:
Ying Shi
E-mail: shi_ying@jlu.edu.cn
|
Cite this article:
Hang Yin(尹航), Ying Shi(石英) Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method 2018 Chin. Phys. B 27 058201
|
[1] |
Weller A 1956 Ber. Bunsenges. Phys. Chem. 60 1144
|
[2] |
Ma C, Yang Y, Li C and Liu Y 2015 J. Phys. Chem. A 119 12686
|
[3] |
Feng Y P and Pang X F 2003 Chin. Phys. Lett. 20 1662
|
[4] |
Li P L, Zheng J J and Lu Y Q 2010 Acta Phys. Sin. 59 4687(in Chinese)
|
[5] |
Yang D P, Yang G, Zhao J F, Zheng R and Wang Y S 2017 J. Cluster Sci. 28 2449
|
[6] |
Yang D P, Zheng R, Wang Y S and Lv J 2017 J. Cluster Sci. 28 937
|
[7] |
Amani T, Jordi M, Ali K and Kaher T 2014 Chin. Phys. B 23 46101
|
[8] |
Jia X L, Li C Z, Li D L and Liu Y F 2018 Spectrochim. Acta, Part A 192 168
|
[9] |
Zheng D Y, Zhang M Z and Zhao G J 2017 Sci. Rep. 7 13766
|
[10] |
Han K L and Zhao G J 2011 Hydrogen Bonding and Transfer in the Excited State (Wiley Online Library) p. 555
|
[11] |
Zheng J J, Zhang G L, Guo Y X, Li X P and Chen W J 2007 Chin. Phys. B 16 1047
|
[12] |
Wu F, Lin L, Li X P, Yu Y X, Zhang G L and Chen W J 2008 Chin. Phys. B 17 1461
|
[13] |
Zhao J Z, Ji S M, Chen Y H, Guo H M and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
|
[14] |
Shiraishi Y, Matsunaga Y, Hongpitakpong P and Hirai T 2013 Chem. Commun. 49 3434
|
[15] |
Liu B, Wang H, Wang T S, Bao Y Y, Du F F, Tian J, Li Q B A and Bai R K 2012 Chem. Commun. 48 2867
|
[16] |
Shynkar V V, Klymchenko A S, Kunzelmann C, Duportail G, Muller C D, Demchenko A P, Freyssinet J M and Mely Y 2007 J. Am. Chem. Soc. 129 2187
|
[17] |
Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J and Park S Y 2009 J. Am. Chem. Soc. 131 14043
|
[18] |
Paterson M J, Robb M A, Blancafort L and DeBellis A D 2005 J. Phys. Chem. A 109 7527
|
[19] |
Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
|
[20] |
Li C Z, Yang Y G, Ma C and Liu Y F 2016 Rsc Adv. 6 5134
|
[21] |
Padalkar V S and Seki S 2016 Chem. Soc. Rev. 45 169
|
[22] |
Barman S, Mukhopadhyay S K, Biswas S, Nandi S, Gangopadhyay M, Dey S, Anoop A and Singh N D P 2016 Angew. Chem. Int. Ed. 55 4194
|
[23] |
Alarcos N, Gutierrez M, Liras M, Sanchez F, Moreno M and Douhal A 2015 Phys. Chem. Chem. Phys. 17 14569
|
[24] |
Yin H, Shi Y and Wang Y 2014 Spectrochim. Acta Part A 129 280
|
[25] |
Yin H, Li H, Xia G M, Ruan C Y, Shi Y, Wang H M, Jin M X and Ding D J 2016 Sci. Rep. 6 19774
|
[26] |
Liang J, Tang B Z and Liu B 2015 Chem. Soc. Rev. 44 2798
|
[27] |
Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
|
[28] |
Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
|
[29] |
El Nahhas A, Pascher T, Leone L, Panzella L, Napolitano A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2094
|
[30] |
Bi X, Liu B, McDonald L and Pang Y 2017 J. Phys. Chem. B 121 4981
|
[31] |
Harnly J M, Doherty R F, Beecher G R, Holden J M, Haytowitz D B, Bhagwat S and Gebhardt S 2006 J. Agric. Food. Chem. 54 9966
|
[32] |
Verma A K and Pratap R 2012 Tetrahcdron 68 8523
|
[33] |
Merken H M and Beecher G R 2000 J. Agric. Food. Chem. 48 577
|
[34] |
Ercelen S, Klymchenko A S, Mély Y and Demchenko A P 2005 Int. J. Biol. Macromol. 35 231
|
[35] |
Xiao J B, Kai G Y, Yang F, Liu C X, Xu X C and Yamamoto K 2011 Mol. Nutr. Food. Res. 55 S86
|
[36] |
Yang D P, Yang Y G and Liu Y F 2014 Spectrochim. Acta Part A 117 379
|
[37] |
Song P, Li Y Z, Ma F C, Pullerits T and Sun M T 2013 J. Phys. Chem. C 117 15879
|
[38] |
Yang Y F, Zhao J F and Li Y Q 2016 Sci. Rep. 6 32152
|
[39] |
Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
|
[40] |
Li Y Z, Qi D W, Song P and Ma F C 2015 Materials 8 42
|
[41] |
Xu B B, Li Y Z, Song P, Ma F C and Sun M T 2017 Sci. Rep. 7 45688
|
[42] |
Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
|
[43] |
Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
|
[44] |
Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
|
[45] |
Treutler O and Ahlrichs R 1995 J. Chem. Phys. 102 346
|
[46] |
Feller D 1996 J. Comput. Chem. 17 1571
|
[47] |
Cancés E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
|
[48] |
Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
|
[49] |
Mennucci B, Cancés E and Tomasi J 1997 J. Phys. Chem. B 101 10506
|
[50] |
Frisch M J et al Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, 2009)
|
[51] |
Lu T and Chen F 2012 J. Comput. Chem. 33 580
|
[52] |
Lukeš V, Aquino A and Lischka H 2005 J. Phys. Chem. A 109 10232
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|