Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058201    DOI: 10.1088/1674-1056/27/5/058201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method

Hang Yin(尹航)1,2, Ying Shi(石英)1
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Abstract  

Time-dependent density functional theory (TDDFT) method is used to investigate the details of the excited state intramolecular proton transfer (ESIPT) process and the mechanism for temperature effect on the Enol*/Keto* emission ratio for the Me2N-substited flavonoid (MNF) compound. The geometric structures of the S0 and S1 states are denoted as the Enol, Enol*, and Keto*. In addition, the absorption and fluorescence peaks are also calculated. It is noted that the calculated large Stokes shift is in good agreement with the experimental result. Furthermore, our results confirm that the ESIPT process happens upon photoexcitation, which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared (IR) spectra involved in the proton transfer and in the potential energy curves. Besides, the calculations of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S1 state induces the ESIPT. Moreover, the thermodynamic calculation for the MNF shows that the Enol*/Keto* emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.

Keywords:  time-dependent density functional theory      excited state intramolecular proton transfer      intramolecular charge transfer      transition state  
Received:  27 December 2017      Revised:  23 January 2018      Accepted manuscript online: 
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No.2013CB922204),the National Natural Science Foundation of China (Grant Nos.11574115 and 11704146),and the Natural Science Foundation of Jilin Province,China (Grant No.20150101063JC).

Corresponding Authors:  Ying Shi     E-mail:  shi_ying@jlu.edu.cn

Cite this article: 

Hang Yin(尹航), Ying Shi(石英) Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method 2018 Chin. Phys. B 27 058201

[1] Weller A 1956 Ber. Bunsenges. Phys. Chem. 60 1144
[2] Ma C, Yang Y, Li C and Liu Y 2015 J. Phys. Chem. A 119 12686
[3] Feng Y P and Pang X F 2003 Chin. Phys. Lett. 20 1662
[4] Li P L, Zheng J J and Lu Y Q 2010 Acta Phys. Sin. 59 4687(in Chinese)
[5] Yang D P, Yang G, Zhao J F, Zheng R and Wang Y S 2017 J. Cluster Sci. 28 2449
[6] Yang D P, Zheng R, Wang Y S and Lv J 2017 J. Cluster Sci. 28 937
[7] Amani T, Jordi M, Ali K and Kaher T 2014 Chin. Phys. B 23 46101
[8] Jia X L, Li C Z, Li D L and Liu Y F 2018 Spectrochim. Acta, Part A 192 168
[9] Zheng D Y, Zhang M Z and Zhao G J 2017 Sci. Rep. 7 13766
[10] Han K L and Zhao G J 2011 Hydrogen Bonding and Transfer in the Excited State (Wiley Online Library) p. 555
[11] Zheng J J, Zhang G L, Guo Y X, Li X P and Chen W J 2007 Chin. Phys. B 16 1047
[12] Wu F, Lin L, Li X P, Yu Y X, Zhang G L and Chen W J 2008 Chin. Phys. B 17 1461
[13] Zhao J Z, Ji S M, Chen Y H, Guo H M and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
[14] Shiraishi Y, Matsunaga Y, Hongpitakpong P and Hirai T 2013 Chem. Commun. 49 3434
[15] Liu B, Wang H, Wang T S, Bao Y Y, Du F F, Tian J, Li Q B A and Bai R K 2012 Chem. Commun. 48 2867
[16] Shynkar V V, Klymchenko A S, Kunzelmann C, Duportail G, Muller C D, Demchenko A P, Freyssinet J M and Mely Y 2007 J. Am. Chem. Soc. 129 2187
[17] Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J and Park S Y 2009 J. Am. Chem. Soc. 131 14043
[18] Paterson M J, Robb M A, Blancafort L and DeBellis A D 2005 J. Phys. Chem. A 109 7527
[19] Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
[20] Li C Z, Yang Y G, Ma C and Liu Y F 2016 Rsc Adv. 6 5134
[21] Padalkar V S and Seki S 2016 Chem. Soc. Rev. 45 169
[22] Barman S, Mukhopadhyay S K, Biswas S, Nandi S, Gangopadhyay M, Dey S, Anoop A and Singh N D P 2016 Angew. Chem. Int. Ed. 55 4194
[23] Alarcos N, Gutierrez M, Liras M, Sanchez F, Moreno M and Douhal A 2015 Phys. Chem. Chem. Phys. 17 14569
[24] Yin H, Shi Y and Wang Y 2014 Spectrochim. Acta Part A 129 280
[25] Yin H, Li H, Xia G M, Ruan C Y, Shi Y, Wang H M, Jin M X and Ding D J 2016 Sci. Rep. 6 19774
[26] Liang J, Tang B Z and Liu B 2015 Chem. Soc. Rev. 44 2798
[27] Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
[28] Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
[29] El Nahhas A, Pascher T, Leone L, Panzella L, Napolitano A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2094
[30] Bi X, Liu B, McDonald L and Pang Y 2017 J. Phys. Chem. B 121 4981
[31] Harnly J M, Doherty R F, Beecher G R, Holden J M, Haytowitz D B, Bhagwat S and Gebhardt S 2006 J. Agric. Food. Chem. 54 9966
[32] Verma A K and Pratap R 2012 Tetrahcdron 68 8523
[33] Merken H M and Beecher G R 2000 J. Agric. Food. Chem. 48 577
[34] Ercelen S, Klymchenko A S, Mély Y and Demchenko A P 2005 Int. J. Biol. Macromol. 35 231
[35] Xiao J B, Kai G Y, Yang F, Liu C X, Xu X C and Yamamoto K 2011 Mol. Nutr. Food. Res. 55 S86
[36] Yang D P, Yang Y G and Liu Y F 2014 Spectrochim. Acta Part A 117 379
[37] Song P, Li Y Z, Ma F C, Pullerits T and Sun M T 2013 J. Phys. Chem. C 117 15879
[38] Yang Y F, Zhao J F and Li Y Q 2016 Sci. Rep. 6 32152
[39] Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
[40] Li Y Z, Qi D W, Song P and Ma F C 2015 Materials 8 42
[41] Xu B B, Li Y Z, Song P, Ma F C and Sun M T 2017 Sci. Rep. 7 45688
[42] Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
[43] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[44] Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
[45] Treutler O and Ahlrichs R 1995 J. Chem. Phys. 102 346
[46] Feller D 1996 J. Comput. Chem. 17 1571
[47] Cancés E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[48] Cammi R and Tomasi J 1995 J. Comput. Chem. 16 1449
[49] Mennucci B, Cancés E and Tomasi J 1997 J. Phys. Chem. B 101 10506
[50] Frisch M J et al Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, 2009)
[51] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[52] Lukeš V, Aquino A and Lischka H 2005 J. Phys. Chem. A 109 10232
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[5] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[6] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[7] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[8] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[9] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[10] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[11] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[12] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[13] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[14] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[15] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
No Suggested Reading articles found!