Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037304    DOI: 10.1088/1674-1056/ab6c4c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles

Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires (N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of N-SiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature, for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity-temperature characteristics, that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing. These results contribute to the electronic application of nanodevices.
Keywords:  N-      P-      As-doped SiC nanowires      transport properties      first-principles theory  
Received:  15 December 2019      Revised:  13 January 2020      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  61.72.U- (Doping and impurity implantation)  
  63.20.dk (First-principles theory)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261).
Corresponding Authors:  Xiao-Yong Fang     E-mail:  fang@ysu.edu.cn

Cite this article: 

Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇) Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles 2020 Chin. Phys. B 29 037304

[1] Fan Y, Wu X L, Zhao P Q and Chu P K 2006 Phys. Lett. A 360 336
[2] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica B 539 72
[3] Wang J, Xiong S J, Wu X L, Li T H and Chu P K 2010 Nano Lett. 10 1466
[4] Hu P, Dong S, Zhang X H, Gu K X, Chen G Q and Hu Z 2017 Sci. Rep. 7 3011
[5] Bekaroglu E, Topsakal M, Cahangirov S and Ciraci S 2010 Phys. Rev. B 81 075433
[6] Gong P, Li Y J, Jia Y H, Li Y L, Li S L, Fang X Y and Cao M S 2018 Phys. Lett. A 382 2484
[7] Li X X, Tian Y, Gao F M, Wang L, Chen S L and Yang W Y 2018 Ceram. Int. 44 19021
[8] Li S Y, Li W Q, Zhao H P and Du L Z 2014 Nanosci. Nanotech. Lett. 6 1091
[9] Matsunami H 2006 Microelectron. Eng. 83 2
[10] Xiong S, Latour B, Ni Y, Volz S and Chalopin Y 2015 Phys. Rev. B 91 224307
[11] Xin X, Yan F, Koeth T W, et al. 2005 Electron. Lett. 41 1192
[12] Wu I J and Guo G Y 2008 Phys. Rev. B 78 035447
[13] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B 26 047309
[14] Phan H P, Dinh T, Kozeki T, Nguyen T K, Qamar A and Namazu T 2016 IEEE Electron Dev. Lett. 37 1029
[15] Zhang Z and Xu Y 2013 Superlattice Microstructure 57 19
[16] Li S L, Li Y L, Li Y J, Gong P and Fang X Y 2017 Int. J. Mod. Phys. B 31 1750173
[17] Ren J F, Zhang Y R, Zhang L, Yuan X B and Hu G C 2014 Mod. Phys. Lett. B 28 1450195
[18] Mpourmpakis G, Froudakis G E and Lithoxoos G P 2006 J. Samios, Nano Lett. 6 1581
[19] Yang L, Zhao H, Fan S M, Deng S S, Lv Q, Lin J and Li C P 2014 Biosens. Bioelectron. 57 199
[20] Raynaud C 2001 J. Non-Cryst. Solids 280 1
[21] Fan X, Ye R, Peng Z, Wang J, Fan A and Guo X 2016 Nanotechnology 27 255604
[22] Kityk I V, Makowska-Janusik M, Kassiba A, et al. 2000 Opt. Mater. 13 449
[23] Hua A, Wei F, Pan D S, Yang L, Feng Y, Li M Z, Wang Y, An J, Geng D Y, Liu H Y, Wang Z H, Liu W, Ma S, He J and Zhang Z D 2017 Appl. Phys. Lett. 111 223105
[24] Yang H J, Cao M S, Li Y, Shi H L, Hou Z L, Fang X Y, Jin H B, Wang W Z and Yuan J 2014 Adv. Opt. Mater. 2 214
[25] Zheng H, Zhang Y, Yan Y, et al. 2014 Carbon 78 288
[26] Li H P, Fu W Y, Shen X P, Han K and Wang W H 2017 Chin. Phys. B 26 127801
[27] Zhang K L, Zhang J Y, Hou Z L, Bi S and Zhao Q L 2019 Carbon 141 608
[28] Zhang X, Chen Y, Xie Z, et al. 2010 J. Phys. Chem. C 114 8251
[29] Yang Y, Yang H, Wei G D, Wang L, Shang M H, Yang Z B, Tang B and Yang W Y 2014 J. Mater. Chem. C 2 4515
[30] Zhao J, Meng A, Zhang M, Ren W P and Li Z J 2015 Phys. Chem. Chem. Phys. 17 28658
[31] Chen Y Q, Zhang X N and Xie Z P 2015 ACS Nano 9 8054
[32] Li Y J, Li S L, Gong P, Li Y L, Cao M S and Fang X Y 2018 Physica E 98 191
[33] Chen S L, Shang M H, et al. 2016 J. Mater. Chem. C 4 7391
[34] Choueib M, Ayari A, Vincent P, Perisanu S and Purcell S T 2011 J. Appl. Phys. 109 073709
[35] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[36] Li S L, Yu X X, Li Y L, Gong P, Jia Y H, Fang X Y and Cao M S 2019 Eur. Phys. J. B 92 155
[37] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[38] Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L and Cao M S 2015 Phys. Lett. A 379 2245
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[5] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[6] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[7] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[8] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[9] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[10] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[11] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[12] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[13] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[14] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[15] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
No Suggested Reading articles found!