CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs |
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇)† |
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Based on the transport theory and the polarization relaxation model, the effects of hydrogen and hydroxyl passivation on the conductivity and dielectric properties of silicon carbide nanowires (SiCNWs) with different sizes are numerically simulated. The results show that the variation trend of conductivity and band gap of passivated SiCNWs are opposite to the scenario of the size effect of bare SiCNWs. Among the influencing factors of conductivity, the carrier concentration plays a leading role. In the dielectric properties, the bare SiCNWs have a strong dielectric response in the blue light region, while passivated SiCNWs show a more obvious dielectric response in the far ultraviolet-light region. In particular, hydroxyl passivation produces a strong dielectric relaxation in the microwave band, indicating that hydroxyl passivated SiCNWs have a wide range of applications in electromagnetic absorption and shielding.
|
Received: 12 January 2021
Revised: 22 February 2021
Accepted manuscript online: 24 March 2021
|
PACS:
|
78.67.Uh
|
(Nanowires)
|
|
81.65.Rv
|
(Passivation)
|
|
87.16.Uv
|
(Active transport processes)
|
|
77.22.Gm
|
(Dielectric loss and relaxation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574261) and the Natural Science Foundation of Hebei Province, China (Grant No. A2021203030). |
Corresponding Authors:
Xiao-Yong Fang
E-mail: fang@ysu.edu.cn
|
Cite this article:
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇) Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs 2021 Chin. Phys. B 30 107801
|
[1] Konstantinos T, Thibaut B, Ni Y, Samy M, Xanthippi Z, Yann C, Patrice C and Sebastian V 2013 Phys. Rev. B 87 125410 [2] Cheng G, Chang T H, Qin Q, Huang H and Zhu Y 2014 Nano Lett. 14 754 [3] Casady J B and Johnson R W 1996 Solid State Electron 39 1409 [4] Edmond J A 1988 J. Electrochem. Soc. 135 2393 [5] Raynaud C 2001 J. Non-Cryst. Solids 280 1 [6] Fan X, Ye R, Peng Z, Wang J, Fan A and Guo X 2016 Nanotechnology 27 255604 [7] Kityk I V, Makowska-Janusik M, Kassiba A and Plucinski K J 2000 Opt. Mater. 13 449 [8] Yang Y Y, Gong P, Ma W D, Hao R and Fang X Y 2021 Chin. Phys. B 30 067803 [9] Xin X, Yan F, Koeth T W, Joseph C, Hu J, Wu J and Zhao J H 2005 Electron. Lett. 41 1192 [10] Trew R J, Yan J B and Mock P M 1991 Proc. IEEE 79 598 [11] Pham-Huu C, Keller N, Ehret G and Ledoux M J 2001 J. Catal. 200 400 [12] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H and Cao M S 2021 Physica E 128 114578 [13] Ma W D, Liu W K, Gong P, Jia Y H, Yang Y Y and Fang X Y 2021 Int. J. Mod. Phys. B 35 2150207 [14] Gendron F and Porter L M 1995 Appl. Phys. Lett. 67 1253 [15] Trejo A, Calvino M and Cruz-Irisson M 2010 Int. J. Quantum Chem. 110 2455 [16] Cuevas J L, Trejo A, Calvino M, Carvajal E and Cruz-Irisson M 2012 Appl. Surf. Sci. 258 8360 [17] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica B 539 72 [18] Cuevas J L, De Santiago F, Ramírez J, Trejo A, Mirandaá, Pérez L A and Cruz-Irisson M 2018 Comp. Mater. Sci. 142 268 [19] Javan M B 2015 Physica B 456 321 [20] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106 [21] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304 [22] Li S L, Yu X X, Li Y L, Gong P, Jia Y H, Fang X Y and Cao M S 2019 Eur. Phys. J. B 92 155 [23] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247 [24] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L and Cao M S 2021 Opt. Mater. 117 111148 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|