INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface |
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根) |
School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract Tailoring the electronic states of the AlN/diamond interface is critical to the development of the next-generation semiconductor devices such as the deep-ultraviolet light-emitting diode, photodetector, and high-power high-frequency field-effect transistor. In this work, we investigate the electronic properties of the semipolar plane AlN(1101)/diamond heterointerfaces by using the first-principles method with regard to different terminated planes of AlN and surface structures of diamond (100) plane. A large number of gap states exist at semi-polar plane AlN(1101)/diamond heterointerface, which results from the N 2p and C 2s2p orbital states. Besides, the charge transfer at the interface strongly depends on the surface termination of diamond, on which hydrogen suppresses the charge exchange at the interface. The band alignments of semi-polar plane AlN(1101)/diamond show a typical electronic character of the type-Ⅱ staggered band configuration. The hydrogen-termination of diamond markedly increases the band offset with a maximum valence band offset of 2.0 eV and a conduction band offset of 1.3 eV for the semi-polar plane N-AlN(1101)/hydrogenated diamond surface. The unique band alignment of this Type-Ⅱ staggered system with the higher CBO and VBO of the semi-polar AlN/HC(100) heterostructure provides an avenue to the development of robust high-power high-frequency power devices.
|
Received: 04 January 2018
Revised: 11 March 2018
Accepted manuscript online:
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the Scholarship Council of China (Grant No.201508340047),the Postdoctoral Science Foundation of China (Grant No.2016M601993),the Postdoctoral Science Foundation of Anhui Province,China (Grant No.2017B215),and the Anhui Province University Outstanding Talent Cultivation Program,China (Grant No.gxfxZD2016077). |
Corresponding Authors:
Kong-Ping Wu
E-mail: kongpingwu@126.com
|
Cite this article:
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根) Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface 2018 Chin. Phys. B 27 058101
|
[1] |
Nebel C E 2003 Nat. Mater. 2 431
|
[2] |
Nebel C E, Sauerer C, Ertl F, Stutzmann M, Graeff C F O, Bergonzo P, Williams O A and Jackman R 2001 Appl. Phys. Lett. 79 4541
|
[3] |
Volpe P N, Muret P, Pernot J, Omnés F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B and Scharnholz S 2010 Appl. Phys. Lett. 97 223501
|
[4] |
Daicho A, Saito T, Kurihara S, Hiraiwa A and Kawarada H 2014 J. Appl. Phys. 115 223711
|
[5] |
Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
|
[6] |
Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T and Hiraiwa A 2014 Appl. Phys. Lett. 105 013510
|
[7] |
Hirama K, Taniyasu Y and Kasu M 2011 Appl. Phys. Lett. 98 011908
|
[8] |
Imura M, Hayakawa R, Watanabe E, Liao M Y, Koide Y and Amano H 2011 Phys. Status Solidi RRL 5 125
|
[9] |
Silvestri L, Cervenka J, Prawer S and Ladouceur F 2013 Diamond Relat. Mater. 31 25
|
[10] |
Silvestri L and Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534
|
[11] |
van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J and Nemanich R J 1994 Phys. Rev. B 50 5803
|
[12] |
Furthmüller J, Hafner J and Kresse G 1996 Phys. Rev. B 53 7334
|
[13] |
Sque S J, Jones R and Briddon P R 2006 Phys. Rev. B 73 085313
|
[14] |
Hassan Mir M and Larsson K 2014 J. Phys. Chem. C 118 22995
|
[15] |
Takeuchi D, Koizumi S, Makino T, Kato H, Ogura M, Ohashi H, Okushi H and Yamasaki S 2013 Phys. Status Solidi A 210 1961
|
[16] |
Hung A, Russo S P and Mcculloch D G 2004 J. Chem. Phys. 120 4890
|
[17] |
Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
|
[18] |
O'Donnell K M, Martin T L, Fox N A and Cherns D 2010 Phys. Rev. B 82 115303
|
[19] |
Long R, Dai Y, Yu L, Jin H and Huang B 2008 Appl. Surf. Sci. 254 6478
|
[20] |
Wu K P, Ye J D, Tang K, Qi J, Zhu S M and Gu S L 2015 Comput. Mater. Sci. 109 225
|
[21] |
Deng H X, Luo J W and Wei S H 2015 Phys. Rev. B 91 075315
|
[22] |
Sinai O, Hofmann O T, Rinke P, Scheffler M, Heime G and Kronik L 2015 Phys. Rev. B 91 075311
|
[23] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[24] |
Gan L Y, Zhao Y J, Huang D and Schwingenschlögl U 2013 Phys. Rev. B 87 245307
|
[25] |
Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B and Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9
|
[26] |
O'Donnell K M, Edmonds M T, Tadich A, Thomsen L, Stacey A, Schenk A, Pakes C I and Ley L 2015 Phys. Rev. B 92 035303
|
[27] |
Kolpak A M and Beigi S I 2012 Phys. Rev. B 85 195318
|
[28] |
Luo X H, Bersuker G and Demkov A A 2011 Phys. Rev. B 84 195309
|
[29] |
Deng H X, Li S S and Li J B 2010 J. Phys. Chem. C 114 4841
|
[30] |
Berland K and Hyldgaard P 2014 Phys. Rev. B 89 035412
|
[31] |
Amico N R D, Cantele G, Perroni C A and Ninno D 2015 J. Phys.:Condens. Matter 27 015006
|
[32] |
Flage-Larsen E, Lovvik O M, Fang C M and Kresse G 2013 Phys. Rev. B 88 165310
|
[33] |
Gudmundsdóttir S, Tang W J, Henkelman G, Jónsson H and Skúlason E 2012 J. Chem. Phys. 137 164705
|
[34] |
Wu K P, Ma W F, Sun C X, Wang Z G, Ling L Y and Chen C Z 2018 Comput. Mater. Sci. 145 191
|
[35] |
Al-Allak H M and Clark S J 2001 Phys. Rev. B 63 033311
|
[36] |
Peng Q, Wang Z Y, Sa B S, Wu B and Sun Z M 2016 ACS Appl. Mater. Interfaces 8 13449
|
[37] |
Van de Valle C G and Martin R M 1987 Phys. Rev. B 35 8154
|
[38] |
Lin L and Robertson J 2009 Appl. Phys. Lett. 95 012906
|
[39] |
Hirose K, Sakano K, Nohira H and Hattori T 2001 Phys. Rev. B 64 155325
|
[40] |
Sharia O, Demkov A A, Bersuker G and Lee B H 2007 Phys. Rev. B 75 035306
|
[41] |
Liu J W, Liao M Y, Imura M and Koide Y 2012 Appl. Phys. Lett. 101 252108
|
[42] |
Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
|
[43] |
Baca A G, Armstrong A M, Allerman A A, Douglas E A, Sanchez C A, King M P, Coltrin M E, Fortune T R and Kaplar R J 2016 Appl. Phys. Lett. 109 033509
|
[44] |
Liu S H, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B and Chen K J 2015 Appl. Phys. Lett. 106 051605
|
[45] |
Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O and Stutzmann M 2001 Appl. Phys. Lett. 78 2503
|
[46] |
Wu C I and Kahn A 1999 Appl. Phys. Lett. 74 546
|
[47] |
Nemanich R J, Benjamin M C, Bozeman S P, Bremser M D, King S W, Ward B L, Davis R F, Chen B, Zhang Z and Bernholc J 1995 Mater. Res. Soc. Symp. Proc. 395 777
|
[48] |
Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S and Moran D A J 2016 Appl. Phys. Lett. 108 042103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|