Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058101    DOI: 10.1088/1674-1056/27/5/058101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface

Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根)
School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
Abstract  Tailoring the electronic states of the AlN/diamond interface is critical to the development of the next-generation semiconductor devices such as the deep-ultraviolet light-emitting diode, photodetector, and high-power high-frequency field-effect transistor. In this work, we investigate the electronic properties of the semipolar plane AlN(1101)/diamond heterointerfaces by using the first-principles method with regard to different terminated planes of AlN and surface structures of diamond (100) plane. A large number of gap states exist at semi-polar plane AlN(1101)/diamond heterointerface, which results from the N 2p and C 2s2p orbital states. Besides, the charge transfer at the interface strongly depends on the surface termination of diamond, on which hydrogen suppresses the charge exchange at the interface. The band alignments of semi-polar plane AlN(1101)/diamond show a typical electronic character of the type-Ⅱ staggered band configuration. The hydrogen-termination of diamond markedly increases the band offset with a maximum valence band offset of 2.0 eV and a conduction band offset of 1.3 eV for the semi-polar plane N-AlN(1101)/hydrogenated diamond surface. The unique band alignment of this Type-Ⅱ staggered system with the higher CBO and VBO of the semi-polar AlN/HC(100) heterostructure provides an avenue to the development of robust high-power high-frequency power devices.
Keywords:  diamond      heterointerface      charge transfer      band offset  
Received:  04 January 2018      Revised:  11 March 2018      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  73.20.At (Surface states, band structure, electron density of states)  
  81.05.Ea (III-V semiconductors)  
  74.25.F- (Transport properties)  
Fund: Project supported by the Scholarship Council of China (Grant No.201508340047),the Postdoctoral Science Foundation of China (Grant No.2016M601993),the Postdoctoral Science Foundation of Anhui Province,China (Grant No.2017B215),and the Anhui Province University Outstanding Talent Cultivation Program,China (Grant No.gxfxZD2016077).
Corresponding Authors:  Kong-Ping Wu     E-mail:  kongpingwu@126.com

Cite this article: 

Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根) Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface 2018 Chin. Phys. B 27 058101

[1] Nebel C E 2003 Nat. Mater. 2 431
[2] Nebel C E, Sauerer C, Ertl F, Stutzmann M, Graeff C F O, Bergonzo P, Williams O A and Jackman R 2001 Appl. Phys. Lett. 79 4541
[3] Volpe P N, Muret P, Pernot J, Omnés F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B and Scharnholz S 2010 Appl. Phys. Lett. 97 223501
[4] Daicho A, Saito T, Kurihara S, Hiraiwa A and Kawarada H 2014 J. Appl. Phys. 115 223711
[5] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[6] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T and Hiraiwa A 2014 Appl. Phys. Lett. 105 013510
[7] Hirama K, Taniyasu Y and Kasu M 2011 Appl. Phys. Lett. 98 011908
[8] Imura M, Hayakawa R, Watanabe E, Liao M Y, Koide Y and Amano H 2011 Phys. Status Solidi RRL 5 125
[9] Silvestri L, Cervenka J, Prawer S and Ladouceur F 2013 Diamond Relat. Mater. 31 25
[10] Silvestri L and Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534
[11] van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J and Nemanich R J 1994 Phys. Rev. B 50 5803
[12] Furthmüller J, Hafner J and Kresse G 1996 Phys. Rev. B 53 7334
[13] Sque S J, Jones R and Briddon P R 2006 Phys. Rev. B 73 085313
[14] Hassan Mir M and Larsson K 2014 J. Phys. Chem. C 118 22995
[15] Takeuchi D, Koizumi S, Makino T, Kato H, Ogura M, Ohashi H, Okushi H and Yamasaki S 2013 Phys. Status Solidi A 210 1961
[16] Hung A, Russo S P and Mcculloch D G 2004 J. Chem. Phys. 120 4890
[17] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[18] O'Donnell K M, Martin T L, Fox N A and Cherns D 2010 Phys. Rev. B 82 115303
[19] Long R, Dai Y, Yu L, Jin H and Huang B 2008 Appl. Surf. Sci. 254 6478
[20] Wu K P, Ye J D, Tang K, Qi J, Zhu S M and Gu S L 2015 Comput. Mater. Sci. 109 225
[21] Deng H X, Luo J W and Wei S H 2015 Phys. Rev. B 91 075315
[22] Sinai O, Hofmann O T, Rinke P, Scheffler M, Heime G and Kronik L 2015 Phys. Rev. B 91 075311
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Gan L Y, Zhao Y J, Huang D and Schwingenschlögl U 2013 Phys. Rev. B 87 245307
[25] Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B and Feng Y D 2016 Mater. Sci. Semicond. Process. 45 9
[26] O'Donnell K M, Edmonds M T, Tadich A, Thomsen L, Stacey A, Schenk A, Pakes C I and Ley L 2015 Phys. Rev. B 92 035303
[27] Kolpak A M and Beigi S I 2012 Phys. Rev. B 85 195318
[28] Luo X H, Bersuker G and Demkov A A 2011 Phys. Rev. B 84 195309
[29] Deng H X, Li S S and Li J B 2010 J. Phys. Chem. C 114 4841
[30] Berland K and Hyldgaard P 2014 Phys. Rev. B 89 035412
[31] Amico N R D, Cantele G, Perroni C A and Ninno D 2015 J. Phys.:Condens. Matter 27 015006
[32] Flage-Larsen E, Lovvik O M, Fang C M and Kresse G 2013 Phys. Rev. B 88 165310
[33] Gudmundsdóttir S, Tang W J, Henkelman G, Jónsson H and Skúlason E 2012 J. Chem. Phys. 137 164705
[34] Wu K P, Ma W F, Sun C X, Wang Z G, Ling L Y and Chen C Z 2018 Comput. Mater. Sci. 145 191
[35] Al-Allak H M and Clark S J 2001 Phys. Rev. B 63 033311
[36] Peng Q, Wang Z Y, Sa B S, Wu B and Sun Z M 2016 ACS Appl. Mater. Interfaces 8 13449
[37] Van de Valle C G and Martin R M 1987 Phys. Rev. B 35 8154
[38] Lin L and Robertson J 2009 Appl. Phys. Lett. 95 012906
[39] Hirose K, Sakano K, Nohira H and Hattori T 2001 Phys. Rev. B 64 155325
[40] Sharia O, Demkov A A, Bersuker G and Lee B H 2007 Phys. Rev. B 75 035306
[41] Liu J W, Liao M Y, Imura M and Koide Y 2012 Appl. Phys. Lett. 101 252108
[42] Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
[43] Baca A G, Armstrong A M, Allerman A A, Douglas E A, Sanchez C A, King M P, Coltrin M E, Fortune T R and Kaplar R J 2016 Appl. Phys. Lett. 109 033509
[44] Liu S H, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B and Chen K J 2015 Appl. Phys. Lett. 106 051605
[45] Grabowski S P, Schneider M, Nienhaus H, Mönch W, Dimitrov R, Ambacher O and Stutzmann M 2001 Appl. Phys. Lett. 78 2503
[46] Wu C I and Kahn A 1999 Appl. Phys. Lett. 74 546
[47] Nemanich R J, Benjamin M C, Bozeman S P, Bremser M D, King S W, Ward B L, Davis R F, Chen B, Zhang Z and Bernholc J 1995 Mater. Res. Soc. Symp. Proc. 395 777
[48] Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S and Moran D A J 2016 Appl. Phys. Lett. 108 042103
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[7] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[8] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[9] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[10] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[11] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[12] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[13] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[14] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[15] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
No Suggested Reading articles found!