Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044204    DOI: 10.1088/1674-1056/ac3ed0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Orientation and ellipticity dependence of high-order harmonic generation in nanowires

Fan Yang(杨帆)1,2, Yinghui Zheng(郑颖辉)1,†, Luyao Zhang(张路遥)1, Xiaochun Ge(葛晓春)1, and Zhinan Zeng(曾志男)1,‡
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  It has been predicted that high-order harmonic generation (HHG) in nanowires has the potential to scale up photon energy and harmonic yield. However, studies on HHG in nanowires are still theoretical and no relevant experimental results have been reported as yet. Our experimental observation of the high-order harmonic in cadmium sulfide nanowires (CdS NWs) excited by a mid-infrared laser is, to our knowledge, the first of such study, and it verifies some of the theoretical results. Our experimental results show that the observed harmonics are strongest when a pump laser is parallel to the nanowires. Therefore, the theoretical prediction that harmonics are strongest under the nanowires parallel to the laser field is confirmed experimentally, and this can be used to determine the orientation of the nanowire. In addition, harmonics are sensitive to the variation of pump light ellipticities. This orientation dependence opens new opportunities to access the ultrafast and strong-field physics of nanowires.
Keywords:  high-order harmonic generation      orientation dependence      ellipticity dependence      nanowires  
Received:  27 September 2021      Revised:  08 November 2021      Accepted manuscript online:  01 December 2021
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91950203, 11874374, 61690223, and 11774363), the Youth Innovation Promotion Association of the Chinese Academy Sciences, and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16).
Corresponding Authors:  Yinghui Zheng, Zhinan Zeng     E-mail:  yhzheng@siom.ac.cn;zhinan_zeng@mail.siom.ac.cn

Cite this article: 

Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男) Orientation and ellipticity dependence of high-order harmonic generation in nanowires 2022 Chin. Phys. B 31 044204

[1] Chang Z H, Rundquist A, Wang H W, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 79 2967
[2] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[3] Zhang X M, Shen B F, Zhang L G and Shi Y 2021 High Power Laser Science and Engineering 9 e28
[4] Shen X, Wang J, Guo F, Chen J and Yang Y 2020 Chin. Phys. B 29 083201
[5] Pan Y, Guo F, Yang Y and Ding D 2019 Chin. Phys. B 28 113201
[6] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138
[7] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498
[8] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[9] Wu J, Zheng Y, Zeng Z and Li R 2020 Chin. Opt. Lett. 18 103201
[10] Yoshikawa N, Tamaya T and Tanaka K 2017 Science 356 736
[11] Cao J, Li N, Bai Y, Liu P and Li R 2021 Chin. Opt. Lett. 19 043201
[12] Guan Z, Liu L, Wang G, Zhao S, Jiao Z and Zhou X 2020 Chin. Phys. B 29 104206
[13] Zaks B, Liu R B and Sherwin M S 2012 Nature 483 580
[14] Borja L J, Zürch M, Pemmaraju C D, Schultze M, Ramasesha K, Gandman A, Prell J S, Prendergast D, Neumark D M and Leone S R 2016 J. Opt. Soc. Am. B 33 C57
[15] Kaneshima K, Shinohara Y, Takeuchi K, Ishii N, Imasaka K, Kaji T, Ashihara S, Ishikawa K L and Itatani J 2018 Phys. Rev. Lett. 120 243903
[16] Liu C, Zheng Y, Zeng Z and Li R 2018 Phys. Rev. A 97 063412
[17] Xia C L and Miao X Y 2015 Chin. Phys. Lett. 32 043202
[18] McDonald C R, Amin K S, Aalmalki S and Brabec T 2017 Phys. Rev. Lett. 119 183902
[19] Li J, Zhang Q, Li L, Zhu X, Huang T, Lan P and Lu P 2019 Phys. Rev. A 99 033421
[20] Ding Y, Yang Q, Guo X, Wang S S, Gu F X, Fu J, Wan Q, Cheng J P and Tong L M 2009 Opt. Express 17 21813
[21] Hu Z, Guo X and Tong L 2013 Appl. Phys. Lett. 103 183104
[22] Huang X Y, Dai S W, Xu P F, Wang Y M, Yang Q, Zhang Y and Xiao M 2017 Chin. Opt. Lett. 15 061901
[23] Hu H, Wang K, Long H, Liu W, Wang B and Lu P 2015 Nano Lett. 15 3351
[24] Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q H and Peng L Y 2018 Phys. Rev. A 97 043420
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[7] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[8] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[11] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[12] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[13] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[14] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[15] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
No Suggested Reading articles found!