Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056112    DOI: 10.1088/1674-1056/abc2bd
Special Issue: SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC—Active matters physics Prev   Next  

Phoretic self-assembly of active colloidal molecules

Lijie Lei(雷李杰)1,2, Shuo Wang(王硕)1,2, Xinyuan Zhang(张昕源)1, Wenjie Lai(赖文杰)1, Jinyu Wu(吴晋宇)1, and Yongxiang Gao(高永祥)1,†
1 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
2 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Abstract  We simulate the self-assembly of active colloidal molecules from binary mixtures of spherical particles using a Brownian dynamics algorithm. These particles interact via phoretic interactions, which are determined by two independently tunable parameters, surface activity and surface mobility. In systems composed of equal-size particles, we observe the formation of colloidal molecules with well-defined coordination numbers and spatial arrangement, which also display distinct dynamic functions, such as resting, translating, and rotating. By changing the size ratio to 2:1 between the two species, we further observe the formation of colloidal molecules with new structures arising from breaking the size symmetry. By tuning the mutual interactions between the smaller species via their surface mobility, we are able to control their spacing as well as the coordination number of the colloidal molecules. This study highlights the importance of tuning surface parameters and size asymmetry in controlling the structure and the active dynamics of colloidal molecules.
Keywords:  Brownian dynamics      diffusiophoresis      active colloidal molecule      self-assembly  
Received:  18 August 2020      Revised:  14 September 2020      Accepted manuscript online:  20 October 2020
PACS:  82.70.Dd (Colloids)  
  61.43.Hv (Fractals; macroscopic aggregates (including diffusion-limited Aggregates))  
  81.16.Dn (Self-assembly)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
Fund: Project supported by the Innovation Program of Guangdong Provincial Department of Education, China (Grant No. 2019KTSCX148) and the Science and Technology Innovation Commission of Shenzhen (Grant No. JCYJ20170818141727254).
Corresponding Authors:  Yongxiang Gao     E-mail:  yongxiang.gao@szu.edu.cn

Cite this article: 

Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥) Phoretic self-assembly of active colloidal molecules 2021 Chin. Phys. B 30 056112

[1] Blaaderen A V 2003 Science 301 470
[2] Poon W 2004 Science 304 830
[3] Löwen H 2018 Europhys. Lett. 121 58001
[4] Gao Y, Mou F, Feng Y, Che S, Li W, Xu L and Guan J 2017 ACS Appl. Mater. Interf. 9 22704
[5] Sánchez S, Soler L and Katuri J 2015 Angew. Chem., Int. Ed. 54 1414
[6] Wang W, Duan W, Ahmed S, Mallouk T E and Sen A 2013 Nano Today 8 531
[7] Malins A, Williams S R, Eggers J, Tanaka H and Royall C P 2009 J. Phys.: Condens. Matter 21 425103
[8] Palagi S and Fischer P 2018 Nature Reviews Materials 3 113
[9] Ozin G A, Manners I, Fournier-Bidoz S and Arsenault A 2005 Adv. Mater. 17 3011
[10] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2012 Rev. Mod. Phys. 85 1143
[11] Timm U and Okubo A 1995 Bull. Math. Biol. 57 631
[12] Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M and Zdravkovic V 2008 Anim. Behav. 76 201
[13] Moussaid M, Garnier S, Theraulaz G and Helbing D 2009 Top. Cogn. Sci. 1 469
[14] Rouet P E, Chomette C, Duguet E and Ravaine S 2018 Angew. Chem., Int. Ed. 57 15754
[15] Duguet E, Désert A, Perro A and Ravaine S 2011 Chem. Soc. Rev. 40 941
[16] Anderson J L 1989 Ann. Rev. Fluid Mech. 21 61
[17] Abecassis B, Cottin-Bizonne C, Ybert C, Ajdari A and Bocquet L 2008 Nat. Mater. 7 785
[18] Moran J L and Posner J D 2017 Annu. Rev. Fluid Mech. 49 511
[19] Soto R and Golestanian R 2014 Phys. Rev. Lett. 112 068301
[20] Golestanian R, Liverpool T B and Ajdari A 2007 New J. Phys. 9 126
[21] Popescu M N, Tasinkevych M and Dietrich S 2011 Europhys. Lett. 95 28004
[22] Sabass B and Seifert U 2010 Phys. Rev. Lett. 105 218103
[23] Michelin S, Lauga E and Bartolo D 2013 Phys. Fluids 25 061701
[24] Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev. Lett. 99 048102
[25] Hong Y, Diaz M, Córdova-Figueroa U M and Sen A 2010 Adv. Funct. Mater. 20 1568
[26] Gao W, Feng X, Pei A, Gu Y, Li J and Wang J 2013 Nanoscale 5 4696
[27] Pavlick R A, Sengupta S, McFadden T, Zhang H and Sen A 2011 Angew. Chem., Int. Ed. 50 9374
[28] Rapaport D C 2004 The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge: Cambridge University Press) p. 15
[29] Frenkel D and Smit B 1996 Understanding molecular simulation: from algorithms to applications, 2nd edn (Boston: Academic Press) p. 48
  • 1. Movie S1.mp4(1008KB)

  • 2. Movie S2.mp4(1089KB)

  • 3. Movie S3.mp4(933KB)

  • 4. Movie S4.mp4(1214KB)

  • 5. Movie S5.mp4(2291KB)

  • 6. Movie S6.mp4(2190KB)

  • 7. Movie S7.mp4(139KB)

  • 8. Movie S8.mp4(883KB)

  • 9. Movie S9.mp4(277KB)

  • 10. Movie S10.mp4(865KB)

  • 11. Movie S11.mp4(1505KB)

  • 12. Movie S12.mp4(1539KB)

[1] Active thermophoresis and diffusiophoresis
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(10): 104702.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[5] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[6] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[7] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[8] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[9] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[10] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[11] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[12] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[13] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[14] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[15] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
No Suggested Reading articles found!