Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036101    DOI: 10.1088/1674-1056/ac20c8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage

Ning Li(李宁)1,2,†, Xin Li(李鑫)1,2,†, Ming-Yue Zhang(张明越)1,2, Jing-Ying Miao(苗景迎)1,2, Shen-Cheng Fu(付申成)1,2,‡, and Xin-Tong Zhang(张昕彤)1,2
1 Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University, Changchun 130024, China;
2 Key Laboratory of UV-Emitting Materials and Technology(Northeast Normal University), Ministry of Education, Changchun 130024, China
Abstract  Noble-metal/metal-oxide-semiconductor nanostructures as an important material platform have been applied in massive data storage. ZnO exhibits excellent optical modulation ability. However, plasmon induced charge separation effect in Ag/ZnO systems is very weak due to the low chemical activity on surface of the oxide. Herein, we prepare ZnO nanowire arrays via the hydrothermal method, and measure their absorption spectra, photoluminescence spectra and electron paramagnetic resonance, proving the existence of oxygen defects in ZnO. Accordingly, an idea of "electron reverse transfer" is proposed such that blue-ray (403.4 nm) induces reduction of Ag+ ions through the excitation of ZnO. Rod-like and spherical silver nanoparticles emerge on the surface and in the gap of ZnO nanowire arrays, respectively, after the visible light stimulus. It is found that nanowire density, oxygen defects and surface roughness are dependent on hydrothermal time. The optimized diffraction efficiency of 0.08% is obtained for reconstructing hologram in the nanocomposite film. This work provides a bright way for construction of ZnO-based optoelectronic integrated devices.
Keywords:  holographic      ZnO nanowires      Ag nanoparticles  
Received:  01 July 2021      Revised:  19 August 2021      Accepted manuscript online:  25 August 2021
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  42.40.Ht (Hologram recording and readout methods)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974073, U19A2091, and 51732003), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13013), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101218JC), and The 13th Five-Year Scientific Research Planning Project of the Education Department of Jilin Province, China (Grant No. JJKH20201161KJ).
Corresponding Authors:  Shen-Cheng Fu     E-mail:  fusc515@nenu.edu.cn

Cite this article: 

Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤) Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage 2022 Chin. Phys. B 31 036101

[1] Zijlstra P, Chon J W M and Gu M 2009 Nature 459 410
[2] Terris B D, Thomson T and Hu G 2007 Microsyst. Technol. 13 189
[3] Wen P, Xu Y, Li S, Sun Z, Panmai M, Xiang J, Tie S and Lan S 2021 Appl. Surf. Sci. 555 149586
[4] Homan S and Willner A E 1995 Proc. SPIE 2514 184
[5] Cao L, Wu S, Hao J, Zhu C, He Z, Zhang Z, Zong S, Zhang F and Jin G 2017 Appl. Phys. Lett. 111 141104
[6] Que M L, Wang X D, Peng Y Y and Pan C F 2017 Chin. Phys. B 26 067301
[7] Bruder F K, Hagen R, Rölle T, Weiser M S and Fäcke T 2011 Angew. Chem. Int. Ed. 50 4552
[8] Yoneda N, Saita Y and Nomura T 2019 Appl. Opt. 58 3083
[9] Dhar L, Hale A, Katz H E, Schilling M L, Schnoes M G and Schilling F C 1999 Opt. Lett. 24 487
[10] Shimada K I and Itoh M 2021 Opt. Commun. 486 126760
[11] Chen X, Shen S, Guo L and Mao S S 2010 Chem. Rev. 110 6503
[12] Yu X, Qiu H, Wang Z, Wang B, Meng Q, Sun S, Tang Y and Zhao K 2021 Appl. Surf. Sci. 556 149785
[13] Tezcan F and Kardaş G 2021 J. Mol. Struct. 1236 130274
[14] Khadtare S, Pathan H M, Han S H and Park J 2021 J. Alloys Compd. 872 159722
[15] Kim A, Won Y, Woo K, Kim C H and Moon J 2013 ACS Nano 7 1081
[16] Xia J, Diao K, Zheng Z and Cui X 2017 RSC Adv. 7 38444
[17] Wang P, Dong T, Jia C and Yang P 2019 Sens. Actuators B Chem. 288 1
[18] Lin Y, Wei W, Wang Y, Zhou J, Sun D, Zhang X and Ruan S 2015 J. Alloys Compd. 650 37
[19] Yang J, Song G, Zhou L, Wang X, You L and Li J 2021 Appl. Surf. Sci. 539 147744
[20] Lin D, Wu H, Zhang W, Li H and Pan W 2009 Appl. Phys. Lett. 94 172103
[21] Kawahara K, Suzuki K, Ohko Y and Tatsuma T 2005 Phys. Chem. Chem. Phys. 7 3851
[22] Qiao Q, Zhang X, Lu Z, Wang L, Liu Y, Zhu X and Li J 2009 Appl. Phys. Lett. 94 074104
[23] Babonneau D, Diop D K, Simonot L, Lamongie B, Blanc N, Boudet N, Vocanson F and Destouches N 2018 Nano Futures 2 015002
[24] Naoi K, Ohko Y and Tatsuma T 2004 J. Am. Chem. Soc. 126 3664
[25] Bai Y J, Liu W Z, Chen A, Shi L, Liu X H and Zi J 2018 Appl. Phys. Lett. 112 211101
[26] zgür ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doǧan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[27] Vayssieres L 2003 Adv. Mater. 15 464
[28] Yuan H, Aljneibi S A A A, Yuan J, Wang Y, Liu H, Fang J, Tang C, Yan X, Cai H, Gu Y, Pennycook S J, Tao J and Zhao D 2019 Adv. Mater. 31 1807161
[29] Rezaie S, Bafghi Z G and Manavizadeh N 2020 Int. J. Hydrog. Energy 45 14174
[30] Wang X, Gao Y, Chen Z, Ding J and Wang H T 2020 Chin. Phys. B 29 014208
[31] Liu H, Hu Y, Zhang Z, Liu X, Jia H and Xu B 2015 Appl. Surf. Sci. 355 644
[32] Nie M, Sun H, Cai H L, Xue Z H, Yang C, Li Q, Qin L Z and Wu M Y 2020 Mater. Lett. 271 127785
[33] Wang S, Jia F, Wang X, Hu L, Sun Y, Yin G, Zhou T, Feng Z, Kumar P and Liu B 2020 ACS Omega 5 5209
[34] van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Lumin. 90 123
[35] Fu S, Sun S, Zhang X, Zhang C, Zhao X and Liu Y 2015 Appl. Surf. Sci. 357 2048
[1] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[2] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[3] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[4] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[5] Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating
Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田). Chin. Phys. B, 2020, 29(1): 014208.
[6] Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰). Chin. Phys. B, 2017, 26(6): 067301.
[7] Liquid crystal Fresnel lens display
Xiao-Qian Wang(王骁乾), Srivastava Abhishek Kumar, Ming-Wai Alwin Tam(谈明威), Zhi-Gang Zheng(郑致刚), Dong Shen(沈冬), Chigrinov G Vladimir, Hoi-Sing Kwok(郭海成). Chin. Phys. B, 2016, 25(9): 094215.
[8] Latest development of display technologies
Hong-Yue Gao(高洪跃), Qiu-Xiang Yao(姚秋香), Pan Liu(刘攀), Zhi-Qiang Zheng(郑志强), Ji-Cheng Liu(刘吉成), Hua-Dong Zheng(郑华东), Chao Zeng(曾超), Ying-Jie Yu(于瀛洁), Tao Sun(孙涛), Zhen-Xiang Zeng(曾震湘). Chin. Phys. B, 2016, 25(9): 094203.
[9] Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films
Hong-Yue Gao(高洪跃), Pan Liu(刘攀), Chao Zeng(曾超), Qiu-Xiang Yao(姚秋香), Zhiqiang Zheng(郑志强), Jicheng Liu(刘吉成), Huadong Zheng(郑华东), Ying-Jie Yu(于瀛洁), Zhen-Xiang Zeng(曾震湘), Tao Sun(孙涛). Chin. Phys. B, 2016, 25(9): 094205.
[10] Electrically tunable holographic polymer templated blue phase liquid crystal grating
He Zheng-Hong (何正红), Chen Chao-Ping (陈超平), Zhu Ji-Liang (朱吉亮), Yuan Ya-Chao (袁亚超), Li Yan (李燕), Hu Wei (胡伟), Li Xiao (李潇), Li Hong-Jing (李洪婧), Lu Jian-Gang (陆建刚), Su Yi-Kai (苏翼凯). Chin. Phys. B, 2015, 24(6): 064203.
[11] Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires
Wu Fang (吴芳), Meng Pei-Wen (孟培雯), Luo Kang (罗康), Liu Yun-Fei (刘云飞), Kan Er-Jun (阚二军). Chin. Phys. B, 2015, 24(3): 037504.
[12] Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view
Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有). Chin. Phys. B, 2014, 23(2): 028401.
[13] OH- absorption and nonvolatile holographic storage properties in Mg:Ru:Fe:LiNbO3 crystal as a function of Mg concentration
Xu Chao (徐超), Zhang Chun-Lei (张春雷), Dai Li (代丽), Leng Xue-Song (冷雪松), Xu Lei (许磊), Xu Yu-Heng (徐玉恒). Chin. Phys. B, 2013, 22(5): 054203.
[14] Enhanced optical absorption by Ag nanoparticles in thin film Si solar cell
Chen Feng-Xiang(陈凤翔), Wang Li-Sheng(汪礼胜), Xu Wen-Ying (许文英). Chin. Phys. B, 2013, 22(4): 045202.
[15] Resisting shrinkage properties of volume holograms recorded in TiO2 nanoparticle-dispersed acrylamide-based photopolymer
Zhao Lei (赵磊), Han Jun-He (韩俊鹤), Li Ruo-Ping (李若平), Wang Long-Ge (王龙阁), Huang Ming-Ju (黄明举). Chin. Phys. B, 2013, 22(12): 124207.
No Suggested Reading articles found!