Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110502    DOI: 10.1088/1674-1056/ac7b1c
GENERAL Prev   Next  

Interface modulated electron mobility enhancement in core-shell nanowires

Yan He(贺言)1,†, Hua-Kai Xu(许华慨)1, and Gang Ouyang(欧阳钢)2,‡
1 College of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China;
2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  The transport properties of core-shell nanowires (CSNWs) under interface modulation and confinement are investigated based on the atomic-bond-relaxation (ABR) correlation mechanism and Fermi's golden rule. An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size, shell thickness and alloyed layer on effective mass, band structures, and deformation potential constant are studied. It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment, but also participate in the carrier transport for enhancing mobility. Moreover, the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified. The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices.
Keywords:  core-shell nanowires      interface modulated      electron mobility  
Received:  07 May 2022      Revised:  12 June 2022      Accepted manuscript online:  22 June 2022
PACS:  05.60.Cd (Classical transport)  
  05.70.Np (Interface and surface thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91833302 and U2001215), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515010989), and the Special Project in Key Fields of Guandong Universities, China (Grant No. 2022ZDZX3015).
Corresponding Authors:  Yan He, Gang Ouyang     E-mail:;

Cite this article: 

Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢) Interface modulated electron mobility enhancement in core-shell nanowires 2022 Chin. Phys. B 31 110502

[1] Dillen D C, Kim K, Liu E S and Tutuc E 2014 Nat. Nanotechnol. 9 116
[2] Wu Z P, Shan S, Zang S Q and Zhong C J 2020 Acc. Chem. Res. 53 2913
[3] Ray S K, Katiyar A K and Raychaudhuri A K 2017 Nanotechnology 28 092001
[4] Nguyen B M, Taur Y, Picraux S T and Dayeh S A 2014 Nano Lett. 14 585
[5] He Y and Ouyang G 2018 Phys. Chem. Chem. Phys. 20 3888
[6] Tian B Z, Kempa T J and Lieber C M 2009 Chem. Soc. Rev. 38 16
[7] Salvatore K L and Wong S S 2021 Acc. Chem. Res. 54 2565
[8] Beane G A, Gong K and Kelley D F 2016 ACS Nano 10 3755
[9] Balaghi L, Bussone G, Grifone R, Hübner R, Grenzer J, Ghorbani-Asl M, Krasheninnikov A V, Schneider H, Helm M and Dimakis E 2019 Nat. Commun. 10 2793
[10] Chaudhuri G R and Paria S 2012 Chem. Rev. 112 2373
[11] Park Y S, Bae W K, Baker T, Lim J and Klimov V I 2015 Nano Lett. 15 7319
[12] Ouyang G, Wang C X and Yang G W 2009 Chem. Rev. 109 4221
[13] He Y, Quan J and Ouyang G 2016 Phys. Chem. Chem. Phys. 18 7001
[14] Cao Y Y, Ouyang G, Wang C X and Yang G W 2013 Nano Lett. 13 436
[15] Lewis R B, Corfdir P, Küpers H, Flissikowski T, Brandt O and Geelhaar L 2018 Nano Lett. 18 2343
[16] Wu K F, Lim J and Klimov V I 2017 ACS Nano 11 8437
[17] Qin W, Liu H and Guyot-Sionnest P 2014 ACS Nano 8 283
[18] Park Y S, Lim J, Makarov N S and Klimov V I 2017 Nano Lett. 17 5607
[19] Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D, Pecchia A, Auf der Maur M, Liedl A, Larciprete R, Kuznetsov D V, Saranin D and Di Carlo A 2019 Nat. Mater. 18 1228
[20] Selopal G S, Zhao H G, Wang Z M and Rosei F 2020 Adv. Funct. Mater. 30 1908762
[21] Zhang L, Xiong Q, Li X P and Ma J X 2015 Appl. Opt. 54 7037
[22] Ahmadzadeh-Bakhshayesh A, Gutkin Y M and Shodja H M 2012 Int. J. Solid Struct. 49 1665
[23] Dhungana K B, Jaishi M and Pati R 2016 Nano Lett. 16 3995
[24] Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S and Klimov V I 2016 Chem. Rev. 116 10513
[25] Yu P Y and Cardona M 2005 Fundamentals of Semiconductors: Physics andMaterials Properties (Berlin, Heidelberg, New York: Springer)
[26] Neophytou N and Kosina H 2011 Phys. Rev. B 84 085313
[27] Neophytou N and Kosina H 2010 Nano Lett. 10 4913
[28] Kittel C 1986 Introduction to solid state physics (New York: Wiley)
[29] Zhu Y F and Jiang Q 2016 Coor. Chem. Rev. 326 1
[30] Zhu Y F, Lian J S and Jiang Q 2009 J. Phys. Chem. C 113 16896
[31] Chandrasekhar H R and Ramdas A K 1980 Phys. Rev. B 21 1511
[32] He Y, Hu S M, Zhu W L and Ouyang G 2020 J. Phys. D: Appl. Phys. 53 125101
[33] Murphy-Armando F, Fagas G and Greer J C 2010 Nano Lett. 10 869
[34] Gass M H, Papworth A J, Beanland R, Bullough T J and Chalker P R 2006 Phys. Rev. B 73 035312
[35] Yan J A, Yang L and Chou M Y 2007 Phys. Rev. B 76 115319
[36] Zheng Y, Rivas C, Lake R, Alam K, Boykin T B and Klimeck G 2005 IEEE Tran. Electron Dev. 52 1097
[37] Buin A K, Verma A, Svizhenko A and Anantram M P 2008 Nano Lett. 8 760
[38] Brus L 1986 J. Phys. Chem. 90 2555
[39] Ouyang G, Zhu W G, Sun C Q, Zhu Z M and Liao S Z 2010 Phys. Chem. Chem. Phys. 12 1543
[40] Luisier M 2011 Appl. Phys. Lett. 98 032111
[41] He Y, Hu S M, Han T K, Chen X Y, Yu Y X, Li T L, Zhu W L and Ouyang G 2019 ACS Omega 4 9198
[42] Wen F and Tutuc E 2018 Nano Lett. 18 94
[43] Penner U, Rücker H and Yassievich I N 1998 Semicond Sci. Technol. 13 709
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[3] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[4] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[5] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[6] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[7] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[8] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[9] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[10] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[11] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[12] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[13] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[14] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[15] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
No Suggested Reading articles found!