Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086502    DOI: 10.1088/1674-1056/ab99af
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering

Heng-Yu Yang(杨恒玉)1,2, Ya-Li Chen(陈亚利)3, Wu-Xing Zhou(周五星)1,2, Guo-Feng Xie(谢国锋)1,2, Ning Xu(徐宁)4,2
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
2 Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China;
3 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
4 Deparment of Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  

The ultra-low thermal conductivity of roughened silicon nanowires (SiNWs) can not be explained by the classical phonon-surface scattering mechanism. Although there have been several efforts at developing theories of phonon-surface scattering to interpret it, but the underlying reason is still debatable. We consider that the bond order loss and correlative bond hardening on the surface of roughened SiNWs will deeply influence the thermal transport because of their ultra-high surface-to-volume ratio. By combining this mechanism with the phonon Boltzmann transport equation, we explicate that the suppression of high-frequency phonons results in the obvious reduction of thermal conductivity of roughened SiNWs. Moreover, we verify that the roughness amplitude has more remarkable influence on thermal conductivity of SiNWs than the roughness correlation length, and the surface-to-volume ratio is a nearly universal gauge for thermal conductivity of roughened SiNWs.

Keywords:  thermal conductivity      silicon nanowires      bond order imperfections      phonon-surface scattering  
Received:  31 March 2020      Revised:  04 June 2020      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11874145).

Corresponding Authors:  Guo-Feng Xie, Guo-Feng Xie     E-mail:  gfxie@xtu.edu.cn;nxu@ycit.cn

Cite this article: 

Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁) Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering 2020 Chin. Phys. B 29 086502

[1] Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
[2] Lee J, Lee W, Lim J, Yu Y, Kong Q, Urban J J and Yang P 2016 Nano Lett. 16 4133
[3] Balandin A A 2011 Nat. Mater. 10 569
[4] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
[5] Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J and Yang N 2019 J. Mater. Chem. A. 7 2114
[6] Tang L P, Li Q Z, Zhang C X, Ning F, Zhou W X, Tang L M and Chen K Q 2019 J. Magn. Magn. Mater. 488 165354
[7] Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A. 6 21532
[8] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
[9] Xiao H, Cao W, Ouyang T, Xu X, Ding Y and Zhong J 2018 Appl. Phys. Lett. 112 233107
[10] Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
[11] Zhu X L, Liu P F, Xie G F, Zhou W X, Wang B T and Zhang G 2019 Nanomaterials 9 597
[12] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[13] Cao B Y, Zou J H, Hu G J and Cao G X 2018 Appl. Phys. Lett. 112 041603
[14] Yang J K, Yang Y, Waltermire S W, Wu X X, Zhang H T, Gutu T, Jiang T F, Chen Y F, Zinn A A, Prasher R, Xu T T and Li D Y 2012 Nat. Nanotechnol. 7 91
[15] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[16] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[17] Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J 2020 Adv. Funct. Mater. 30 1904349
[18] Zhou W X, Chen Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[19] Yin Y, Li D, Hu Y, Ding G, Zhou H and Zhang G 2020 Nanotechnology
[20] Chen X K and Chen K Q 2020 J. Phys.:Condens. Matter 32 153002
[21] Zhu X L, Liu P F, Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
[22] Hua Y C and Cao B Y 2018 J. Appl. Phys. 123 114304
[23] Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308
[24] Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
[25] Xie G F, Ding D and Zhang G 2018 Adv. Phys. X 3 1480417
[26] Majumdar A 1993 J. Heat Transfer 115 7
[27] Nika D L, Cocemasov A I, Isacova C I, Balandin A A, Fomin V M and Schmidt O G 2012 Phys. Rev. B. 85 205439
[28] Nika D L, Askerov A S and Balandin A A 2012 Nano Lett. 12 3238
[29] Ziman J M 1960 Electrons and Phonons (Clarendon:Oxford) p. 35
[30] Dames C and Chen G 2004 J. Appl. Phys. 95 682
[31] Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
[32] Aksamija Z and Knezevic I 2011 Appl. Phys. Lett. 98 141919
[33] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S and Royer P 2010 J. Appl. Phys. 107 083503
[34] Heron J S, Fournier T, Mingo N and Bourgeois O 2009 Nano Lett. 9 1861
[35] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[36] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[37] Moore A L, Saha S K, Prasher R S and Shi L 2008 Appl. Phys. Lett. 93 083112
[38] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[39] Sadhu J and Sinha S 2011 Phys. Rev. B. 84 115450
[40] Lim J, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P 2012 Nano Lett. 12 2475
[41] Malhotra1 A and Maldovan M 2016 Sci. Rep. 6 25818
[42] Lee J, Lim J and Yang P D 2015 Nano Lett. 15 3273
[43] Pauling L 1947 J. Am. Chem. Soc. 69 542
[44] Sun C Q 2007 Prog. Solid State. Chem. 35 1
[45] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q and Zhang G 2018 npj Comput. Mater. 4 21
[46] McGaughey A J, Landry E S, Sellan D P and Amon C H 2011 Appl. Phys. Lett. 99 131904
[47] Yang F and Dames C 2013 Phys. Rev. B. 87 035437
[48] Pop E, Dutton R W and Goodson K E 2004 J. Appl. Phys. 96 4998
[49] Dolling G and Ekland S 1963 In inelastic scattering of neutrons in solids and liquids (IAEA:Vienna) p. 37
[50] Morelli D, Heremans J and Slack G 2002 Phys. Rev. B. 66 195304
[51] Mingo N 2003 Phys. Rev. B. 68 113308
[52] Goodnick S M, Ferry D K, Wilmsen C W, Liliental Z, Fathy D and Krivanek O L 1985 Phys. Rev. B. 32 8171
[53] Buran C, Pala M G, Bescond M, Dubois M and Mouis M 2009 IEEE Trans. Elect. Dev. 56 2186
[54] Maurer L Aksamija N Z, Ramayya E B, Davoody A H and Knezevic I 2015 Appl. Phys. Lett. 106 133108
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!