Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering |
Heng-Yu Yang(杨恒玉)1,2, Ya-Li Chen(陈亚利)3, Wu-Xing Zhou(周五星)1,2, Guo-Feng Xie(谢国锋)1,2, Ning Xu(徐宁)4,2 |
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
2 Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China;
3 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
4 Deparment of Physics, Yancheng Institute of Technology, Yancheng 224051, China |
|
|
Abstract The ultra-low thermal conductivity of roughened silicon nanowires (SiNWs) can not be explained by the classical phonon-surface scattering mechanism. Although there have been several efforts at developing theories of phonon-surface scattering to interpret it, but the underlying reason is still debatable. We consider that the bond order loss and correlative bond hardening on the surface of roughened SiNWs will deeply influence the thermal transport because of their ultra-high surface-to-volume ratio. By combining this mechanism with the phonon Boltzmann transport equation, we explicate that the suppression of high-frequency phonons results in the obvious reduction of thermal conductivity of roughened SiNWs. Moreover, we verify that the roughness amplitude has more remarkable influence on thermal conductivity of SiNWs than the roughness correlation length, and the surface-to-volume ratio is a nearly universal gauge for thermal conductivity of roughened SiNWs.
|
Received: 31 March 2020
Revised: 04 June 2020
Accepted manuscript online:
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874145). |
Corresponding Authors:
Guo-Feng Xie, Guo-Feng Xie
E-mail: gfxie@xtu.edu.cn;nxu@ycit.cn
|
Cite this article:
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁) Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering 2020 Chin. Phys. B 29 086502
|
[1] |
Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
|
[2] |
Lee J, Lee W, Lim J, Yu Y, Kong Q, Urban J J and Yang P 2016 Nano Lett. 16 4133
|
[3] |
Balandin A A 2011 Nat. Mater. 10 569
|
[4] |
Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
|
[5] |
Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J and Yang N 2019 J. Mater. Chem. A. 7 2114
|
[6] |
Tang L P, Li Q Z, Zhang C X, Ning F, Zhou W X, Tang L M and Chen K Q 2019 J. Magn. Magn. Mater. 488 165354
|
[7] |
Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A. 6 21532
|
[8] |
Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
|
[9] |
Xiao H, Cao W, Ouyang T, Xu X, Ding Y and Zhong J 2018 Appl. Phys. Lett. 112 233107
|
[10] |
Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
|
[11] |
Zhu X L, Liu P F, Xie G F, Zhou W X, Wang B T and Zhang G 2019 Nanomaterials 9 597
|
[12] |
Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
|
[13] |
Cao B Y, Zou J H, Hu G J and Cao G X 2018 Appl. Phys. Lett. 112 041603
|
[14] |
Yang J K, Yang Y, Waltermire S W, Wu X X, Zhang H T, Gutu T, Jiang T F, Chen Y F, Zinn A A, Prasher R, Xu T T and Li D Y 2012 Nat. Nanotechnol. 7 91
|
[15] |
Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
|
[16] |
Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
|
[17] |
Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J 2020 Adv. Funct. Mater. 30 1904349
|
[18] |
Zhou W X, Chen Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
|
[19] |
Yin Y, Li D, Hu Y, Ding G, Zhou H and Zhang G 2020 Nanotechnology
|
[20] |
Chen X K and Chen K Q 2020 J. Phys.:Condens. Matter 32 153002
|
[21] |
Zhu X L, Liu P F, Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
|
[22] |
Hua Y C and Cao B Y 2018 J. Appl. Phys. 123 114304
|
[23] |
Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308
|
[24] |
Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
|
[25] |
Xie G F, Ding D and Zhang G 2018 Adv. Phys. X 3 1480417
|
[26] |
Majumdar A 1993 J. Heat Transfer 115 7
|
[27] |
Nika D L, Cocemasov A I, Isacova C I, Balandin A A, Fomin V M and Schmidt O G 2012 Phys. Rev. B. 85 205439
|
[28] |
Nika D L, Askerov A S and Balandin A A 2012 Nano Lett. 12 3238
|
[29] |
Ziman J M 1960 Electrons and Phonons (Clarendon:Oxford) p. 35
|
[30] |
Dames C and Chen G 2004 J. Appl. Phys. 95 682
|
[31] |
Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
|
[32] |
Aksamija Z and Knezevic I 2011 Appl. Phys. Lett. 98 141919
|
[33] |
Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S and Royer P 2010 J. Appl. Phys. 107 083503
|
[34] |
Heron J S, Fournier T, Mingo N and Bourgeois O 2009 Nano Lett. 9 1861
|
[35] |
Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
|
[36] |
Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
|
[37] |
Moore A L, Saha S K, Prasher R S and Shi L 2008 Appl. Phys. Lett. 93 083112
|
[38] |
Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
|
[39] |
Sadhu J and Sinha S 2011 Phys. Rev. B. 84 115450
|
[40] |
Lim J, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P 2012 Nano Lett. 12 2475
|
[41] |
Malhotra1 A and Maldovan M 2016 Sci. Rep. 6 25818
|
[42] |
Lee J, Lim J and Yang P D 2015 Nano Lett. 15 3273
|
[43] |
Pauling L 1947 J. Am. Chem. Soc. 69 542
|
[44] |
Sun C Q 2007 Prog. Solid State. Chem. 35 1
|
[45] |
Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q and Zhang G 2018 npj Comput. Mater. 4 21
|
[46] |
McGaughey A J, Landry E S, Sellan D P and Amon C H 2011 Appl. Phys. Lett. 99 131904
|
[47] |
Yang F and Dames C 2013 Phys. Rev. B. 87 035437
|
[48] |
Pop E, Dutton R W and Goodson K E 2004 J. Appl. Phys. 96 4998
|
[49] |
Dolling G and Ekland S 1963 In inelastic scattering of neutrons in solids and liquids (IAEA:Vienna) p. 37
|
[50] |
Morelli D, Heremans J and Slack G 2002 Phys. Rev. B. 66 195304
|
[51] |
Mingo N 2003 Phys. Rev. B. 68 113308
|
[52] |
Goodnick S M, Ferry D K, Wilmsen C W, Liliental Z, Fathy D and Krivanek O L 1985 Phys. Rev. B. 32 8171
|
[53] |
Buran C, Pala M G, Bescond M, Dubois M and Mouis M 2009 IEEE Trans. Elect. Dev. 56 2186
|
[54] |
Maurer L Aksamija N Z, Ramayya E B, Davoody A H and Knezevic I 2015 Appl. Phys. Lett. 106 133108
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|