Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087702    DOI: 10.1088/1674-1056/ad4cd7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases

Xing-Zhou Tang(汤星舟)1,†, Jia-Yao Ye(叶家耀)1,†, Zi-Ye Wang(王子烨)1, Hao-Yi Jiang(姜皓译)1, Xiao-Hu Shang(尚小虎)1, Zhao-Yan Yang(杨朝雁)1,‡, and Bing-Xiang Li(李炳祥)1,2,§
1 Nanjing University of Posts and Telecommunications, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing 210023, China;
2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
Abstract  The modulation of dielectric anisotropy ($\Delta \varepsilon $) is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals. In this study, we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties. We report the sign-reversal of $\Delta \varepsilon $ in both the nematic and smectic A phases of these mixed liquid crystals, alongside a dual-frequency behaviour across a broad temperature spectrum. Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies. This exploration may pave the way for the discovery of new physical phenomena.
Keywords:  mixed liquid crystal      dielectric anisotropy      tunable      nematic      smectic  
Received:  11 March 2024      Revised:  29 April 2024      Accepted manuscript online: 
PACS:  77.84.Nh (Liquids, emulsions, and suspensions; liquid crystals)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405000), the National Natural Science Foundation of China (Grant No. 62375141), the Natural Science Foundation of Jiangsu Province, Major Project (Grant No. BK20212004), and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. NY222122 and NY222105).
Corresponding Authors:  Zhao-Yan Yang, Bing-Xiang Li     E-mail:  zyyang@njupt.edu.cn;bxli@njupt.edu.cn

Cite this article: 

Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥) Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases 2024 Chin. Phys. B 33 087702

[1] Ma L L, Li C Y, Pan J T, Ji Y E, Jiang C, Zheng R, Wang Z Y, Wang Y, Li B X and Lu Y Q 2022 Light. Sci. Appl. 11 270
[2] Lu Y Q and Li Y 2021 Light. Sci. Appl. 10 122
[3] Yang D K and Wu S T 2014 Fundamentals of liquid crystal devices (Chichester: John Wiley & Sons) pp. 199-200
[4] Huh J W, Oh S W, Seo J H and Yoon T H 2021 J. Mol. Liq. 327 114846
[5] Wyatt P J, Bailey J, Nagaraj M and Jones J C 2021 Nat. Commun. 12 4717
[6] Sun J, Chen Y and Wu S T 2012 Opt. Express 20 20124
[7] Yin K, Hsiang E L, Zou J, Li Y N, Yang Z Y, Yang Q, Lai P C, Lin C H and Wu S T 2022 Light. Sci. Appl. 11 161
[8] Mur U, Ravnik M and Seč D 2022 Sci. Rep. 12 1
[9] Ericksen J L 1960 Arch. Ration. Mech. Anal. 4 231
[10] Leslie F M 1966 Q. J. Mech. Appl. Math. 19 357
[11] Ayeb H, Derbali M, Mouhli A, Soltani T, Jomni F, Fresnais J and Lacaze E 2020 Phys. Rev. E 102 052703
[12] Missaoui T, Amor I B, Soltani T, Ouada H B, Jeanneau E and Chevalier Y 2020 J. Mol. Liq. 304 112726
[13] Trbojevic N, Read D J and Nagaraj M 2017 Phys. Rev. E 96 052703
[14] Mrukiewicz M, Perkowski P and Garbat K 2015 Liq. Cryst. 42 1036
[15] Borshch V, Shiyanovskii S V, Li B X and Lavrentovich O D 2014 Phys. Rev. E 90 062504
[16] Lavrentovich O D, Nazarenko V, Sergan V and Durand G 1992 Phys. Rev. A 45 R6969
[17] Li B X, Xiao R L, Paladugu S, Shiyanovskii S V and Lavrentovich O D 2019 Opt. Express 27 3861
[18] Golovin A B, Shiyanovskii S V and Lavrentovich O D 2003 Appl. Phys. Lett. 83 3864
[19] Yin Y, Gu M, Golovin A, Shiyanovskii S V and Lavrentovich O D 2004 Mol. Cryst. Liq. Cryst. 421 133
[20] Dayton D, Browne S, Gonglewski J and Restaino S 2001 Appl. Opt. 40 2345
[21] Duan W, Chen P, Ge S J, Liang X and Hu W 2019 Crystals. 9 111
[22] Liu C Y, Yen C F, Hung Y H, Tu C M, Wu G Y and Chen H Y 2021 J. Mater. Chem. C 9 16672
[23] Hsiao Y C, Yeh E R and Lee W 2017 Mol. Cryst. Liq. Cryst. 644 12
[24] Suyama S, Date M and Takada H 2000 Jpn. J. Appl. Phys. 39 480
[25] Song Z, Li Z, Shang X, Li C Y, Ma L L, Lu Y Q and Li B X 2023 Chin. Opt. Lett. 21 010501
[26] Tang C Y, Huang S M and Lee W 2011 Dyes Pigm. 88 1
[27] Hsiao Y C and Lee W 2013 Opt. Express 21 23927
[28] Takikawa Y, Kaneko K, Adachi R, Orihara H and Iwata M 2021 Jpn. J. Appl. Phys. 60 125503
[29] Gökçen M, K öysal O, Yıldırım M and Altındal Ş 2012 J. Phys. Chem. Solids 73 987
[30] Kumar A, Silotia P and Biradar A 2011 Appl. Phys. Lett. 99 072902
[31] Manohar R, Pandey K K, Srivastava A K, Misra A K and Yadav S P 2010 J. Phys. Chem. Solids 71 1311
[32] Song J K, Manna U, Fukuda A and Vij J K 2007 Appl. Phys. Lett. 91 042907
[33] Porenta T, Ravnik M and Zumer S 2011 Soft Matter 7 132
[34] Schadt M 1982 Mol. Cryst. Liq. Cryst. 89 77
[35] Berry M 1984 Phys. Bull. 35 438
[1] Tunable superconducting resonators via on-chip control of local magnetic field
Chen-Guang Wang(王晨光), Wen-Cheng Yue(岳文诚), Xuecou Tu(涂学凑), Tianyuan Chi(迟天圆), Tingting Guo(郭婷婷), Yang-Yang Lyu(吕阳阳), Sining Dong(董思宁), Chunhai Cao(曹春海), Labao Zhang(张蜡宝), Xiaoqing Jia(贾小氢), Guozhu Sun(孙国柱), Lin Kang(康琳), Jian Chen(陈健), Yong-Lei Wang(王永磊), Huabing Wang(王华兵), and Peiheng Wu(吴培亨). Chin. Phys. B, 2024, 33(5): 058402.
[2] Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
Xian-Jie Zheng(郑先杰), Meng Ding(丁萌), Liao-Xue Liu(刘辽雪), Lu Wang(王璐), and Yu Guo(郭毓). Chin. Phys. B, 2024, 33(1): 010703.
[3] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[4] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[5] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[6] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[7] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[8] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[9] Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator
Liting Wu(吴利婷), Wenkang Cao(曹文康), and Haolin Jiang(蒋昊林). Chin. Phys. B, 2023, 32(10): 104201.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[12] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[13] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[14] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[15] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
No Suggested Reading articles found!