CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases |
Xing-Zhou Tang(汤星舟)1,†, Jia-Yao Ye(叶家耀)1,†, Zi-Ye Wang(王子烨)1, Hao-Yi Jiang(姜皓译)1, Xiao-Hu Shang(尚小虎)1, Zhao-Yan Yang(杨朝雁)1,‡, and Bing-Xiang Li(李炳祥)1,2,§ |
1 Nanjing University of Posts and Telecommunications, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing 210023, China; 2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China |
|
|
Abstract The modulation of dielectric anisotropy ($\Delta \varepsilon $) is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals. In this study, we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties. We report the sign-reversal of $\Delta \varepsilon $ in both the nematic and smectic A phases of these mixed liquid crystals, alongside a dual-frequency behaviour across a broad temperature spectrum. Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies. This exploration may pave the way for the discovery of new physical phenomena.
|
Received: 11 March 2024
Revised: 29 April 2024
Accepted manuscript online:
|
PACS:
|
77.84.Nh
|
(Liquids, emulsions, and suspensions; liquid crystals)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405000), the National Natural Science Foundation of China (Grant No. 62375141), the Natural Science Foundation of Jiangsu Province, Major Project (Grant No. BK20212004), and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. NY222122 and NY222105). |
Corresponding Authors:
Zhao-Yan Yang, Bing-Xiang Li
E-mail: zyyang@njupt.edu.cn;bxli@njupt.edu.cn
|
Cite this article:
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥) Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases 2024 Chin. Phys. B 33 087702
|
[1] Ma L L, Li C Y, Pan J T, Ji Y E, Jiang C, Zheng R, Wang Z Y, Wang Y, Li B X and Lu Y Q 2022 Light. Sci. Appl. 11 270 [2] Lu Y Q and Li Y 2021 Light. Sci. Appl. 10 122 [3] Yang D K and Wu S T 2014 Fundamentals of liquid crystal devices (Chichester: John Wiley & Sons) pp. 199-200 [4] Huh J W, Oh S W, Seo J H and Yoon T H 2021 J. Mol. Liq. 327 114846 [5] Wyatt P J, Bailey J, Nagaraj M and Jones J C 2021 Nat. Commun. 12 4717 [6] Sun J, Chen Y and Wu S T 2012 Opt. Express 20 20124 [7] Yin K, Hsiang E L, Zou J, Li Y N, Yang Z Y, Yang Q, Lai P C, Lin C H and Wu S T 2022 Light. Sci. Appl. 11 161 [8] Mur U, Ravnik M and Seč D 2022 Sci. Rep. 12 1 [9] Ericksen J L 1960 Arch. Ration. Mech. Anal. 4 231 [10] Leslie F M 1966 Q. J. Mech. Appl. Math. 19 357 [11] Ayeb H, Derbali M, Mouhli A, Soltani T, Jomni F, Fresnais J and Lacaze E 2020 Phys. Rev. E 102 052703 [12] Missaoui T, Amor I B, Soltani T, Ouada H B, Jeanneau E and Chevalier Y 2020 J. Mol. Liq. 304 112726 [13] Trbojevic N, Read D J and Nagaraj M 2017 Phys. Rev. E 96 052703 [14] Mrukiewicz M, Perkowski P and Garbat K 2015 Liq. Cryst. 42 1036 [15] Borshch V, Shiyanovskii S V, Li B X and Lavrentovich O D 2014 Phys. Rev. E 90 062504 [16] Lavrentovich O D, Nazarenko V, Sergan V and Durand G 1992 Phys. Rev. A 45 R6969 [17] Li B X, Xiao R L, Paladugu S, Shiyanovskii S V and Lavrentovich O D 2019 Opt. Express 27 3861 [18] Golovin A B, Shiyanovskii S V and Lavrentovich O D 2003 Appl. Phys. Lett. 83 3864 [19] Yin Y, Gu M, Golovin A, Shiyanovskii S V and Lavrentovich O D 2004 Mol. Cryst. Liq. Cryst. 421 133 [20] Dayton D, Browne S, Gonglewski J and Restaino S 2001 Appl. Opt. 40 2345 [21] Duan W, Chen P, Ge S J, Liang X and Hu W 2019 Crystals. 9 111 [22] Liu C Y, Yen C F, Hung Y H, Tu C M, Wu G Y and Chen H Y 2021 J. Mater. Chem. C 9 16672 [23] Hsiao Y C, Yeh E R and Lee W 2017 Mol. Cryst. Liq. Cryst. 644 12 [24] Suyama S, Date M and Takada H 2000 Jpn. J. Appl. Phys. 39 480 [25] Song Z, Li Z, Shang X, Li C Y, Ma L L, Lu Y Q and Li B X 2023 Chin. Opt. Lett. 21 010501 [26] Tang C Y, Huang S M and Lee W 2011 Dyes Pigm. 88 1 [27] Hsiao Y C and Lee W 2013 Opt. Express 21 23927 [28] Takikawa Y, Kaneko K, Adachi R, Orihara H and Iwata M 2021 Jpn. J. Appl. Phys. 60 125503 [29] Gökçen M, K öysal O, Yıldırım M and Altındal Ş 2012 J. Phys. Chem. Solids 73 987 [30] Kumar A, Silotia P and Biradar A 2011 Appl. Phys. Lett. 99 072902 [31] Manohar R, Pandey K K, Srivastava A K, Misra A K and Yadav S P 2010 J. Phys. Chem. Solids 71 1311 [32] Song J K, Manna U, Fukuda A and Vij J K 2007 Appl. Phys. Lett. 91 042907 [33] Porenta T, Ravnik M and Zumer S 2011 Soft Matter 7 132 [34] Schadt M 1982 Mol. Cryst. Liq. Cryst. 89 77 [35] Berry M 1984 Phys. Bull. 35 438 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|