Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097601    DOI: 10.1088/1674-1056/ad50bc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction

Xiaojie Zhang(张晓洁)1, Yuting Wang(王雨汀)1, Yanqiu Chang(常艳秋)1, Huan Wang(王焕)2,†, Jianhong Rong(荣建红)1,‡, and Guohong Yun(云国宏)1,3
1 Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
3 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
Abstract  The dependences of spin wave resonance (SWR) frequency on the surface anisotropy field, interface exchange coupling, symmetry, biquadratic exchange (BQE) interaction, film thickness, and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green's function method. A remarkable increase of SWR frequency, except for energetically lower two modes, can be obtained in our model that takes the BQE interaction into account. Again, the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio. It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films. In addition, for bilayer ferromagnetic films, the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system. These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
Keywords:  spin wave resonance frequency      biquadratic exchange interaction      interface exchange coupling      surface anisotropy  
Received:  26 December 2023      Revised:  27 April 2024      Accepted manuscript online:  28 May 2024
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 2019MS01021), the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant No. NJZY21454), and the Theoretical Physics Discipline Development and Communication Platform of Inner Mongolia University (Grant No. 12147216).
Corresponding Authors:  Huan Wang, Jianhong Rong     E-mail:  wanghuan429@163.com;jhrong502@163.com

Cite this article: 

Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏) Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction 2024 Chin. Phys. B 33 097601

[1] Choi S, Lee K S, Guslienko K Y and Kim S K 2007 Phys. Rev. Lett. 98 087205
[2] Ikeda K, Kobayashi K, Ohta K, Kondo R, Suzuki T and Fujimoto M 2003 IEEE Trans. Magn. 39 3057
[3] Kumar M, Kumar A, Singh A, Anshul A, Sharma S and Sati P C 2022 J. Alloys Compd. 896 163074
[4] Kumar A, Sharma P, Qiu F J, Tang J Y and Tan G L 2022 J. Magn. Magn. Mater. 564 170148
[5] Korenivski V 2000 J. Magn. Magn. Mater. 215-216 800
[6] Klemmer T J, Ellis K A, Chen L H, van Dover B and Jin S 2000 J. Appl. Phys. 87 830
[7] Rong J H, Zhang L, Yun G H and Bao L B 2019 Indian J. Phys. 93 207
[8] Zhou J Y, Rong J H, Wang H, Yun G H, Wang Y N and Zhang S F 2022 Chin. Phys. B 31 017601
[9] Wang L, Jing Z X, Liang J, Zhou A R and Li S D 2022 Chin. Phys. B 31 086201
[10] Zhou J Y, Rong J H, Wang H, Zhang S F and Liu L 2022 Phys. Scr. 97 105810
[11] Chai G Z, Yang Y C, Zhu J Y, Lin M, Sui W B, Guo D W, Li X L and Xue D S 2010 Appl. Phys. Lett. 96 012505
[12] Ren Y H, Wu C, Gong Y, Pettiford C and Sun N X 2009 J. Appl. Phys. 105 073910
[13] Zhang C H, Zhang S, Ma T Y, Chai G Z and Wang T 2022 J. Magn. Magn. Mater. 561 169708
[14] Zhong X X, Phuoc N N, Liu Y and Ong C K 2014 J. Magn. Magn. Mater. 365 8
[15] Jiang C J, Fan X L and Xue D S 2015 Chin. Phys. B 24 057504
[16] Ludwig A, Löhndorf M, Tewes M and Quandt E 2001 IEEE Trans. Magn. 37 2690
[17] Zhang F, Miao H L and Lv J Q 2022 Phys. B 643 414053
[18] Snoek J L 1947 Nature 160 90
[19] Bloch F 1930 Z. Phys. 61 206
[20] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[21] Rado G T and Weertman J R 1959 J. Phys. Chem. Solids 11 315
[22] Kittel C 1958 Phys. Rev. 110 1295
[23] Seavey M H and Tannenwal P E 1958 Phys. Rev. Lett. 1 168
[24] Qiu R K, Wang Z Y and Zhang Z D 2013 J. Magn. Magn. Mater. 331 92
[25] Qiu R K, Ma F J and Zhang Z D 2015 J. Magn. Magn. Mater. 394 454
[26] Qiu R K and Cai W 2017 J. Magn. Magn. Mater. 436 68
[27] Zhang S H, Rong J H, Wang H, Wang D and Zhang L 2018 Surf. Sci. 667 79
[28] Zhang S H, Rong J H, Wang H, Yun G H, Wang Y N and Bao L B 2018 J. Magn. Magn. Mater. 461 23
[29] Zhang S H, Rong J H, Wang H, Wang D and Zhang L 2018 J. Supercond. Nov. Magn. 31 1499
[30] Ma R J, Rong J H, Zhang S H, Wang H and Yun G H 2020 J. Phys. Soc. Jpn. 89 044705
[31] Ma R J, Zhang S H, Rong J H, Yun G H, Bao L B, Liang Y, Bauer R, Zhen J Y and Chang G S 2021 Phys. B 606 412828
[32] Moriya T 1960 Phys. Rev. 120 91
[33] Yi H, Yu J and Lee S I 2000 Phys. Rev. B 61 428
[34] Rabuffo I, De Cesare L, Caramico D’Auria A and Mercaldo M T 2019 J. Magn. Magn. Mater. 472 40
[35] Wang H, Zhou J Y, Wang Y N and Ma R J 2021 Indian J. Phys. 95 2359
[36] Albayrak E 2020 Phys. B 594 412353
[37] Liu C, Kurokawa Y, Hashimoto N, Tanaka T and Yuasa H 2023 Sci. Rep. 13 3631
[38] Yang J T and Hou J X 2022 Eur. Phys. J. B 95 190
[39] Djerroudi L, Boumeddine F and Tamine M 2019 Surf. Sci. 680 32
[40] Anderson P W 1959 Phys. Rev. 115 2
[41] Kittel C 1960 Phys. Rev. 120 335
[42] Huang N L and Orbach R 1964 Phys. Rev. Lett. 12 275
[43] Glasbrenner J K, Velev J P and Mazin I I 2014 Phys. Rev. B 89 064509
[44] Iwashita T and Uryû N 1976 Phys. Rev. B 14 3090
[45] Iwashita T and Uryû N 1976 Phys. Lett. A 58 113
[46] Zhang X J, Rong J H, Wang H and Wang Y T 2023 Phys. Scr. 98 125952
[47] Grünberg P, Barnas J, Saurenbach F, Fuß J A, Wolf A and Vohl M 1991 J. Magn. Magn. Mater. 93 58
[48] Vohl M, Wolf J A, Grunberg P, Spörl K, Weller D and Zeper B 1991 J. Magn. Magn. Mater. 93 403
[1] Solitary excitations in one-dimensional ferromagnetic spin chains with biquadratic exchange interaction
Yu Xiao-Yan(余小燕) and Chen Hao(陈浩) . Chin. Phys. B, 2011, 20(12): 120509.
[1] FAN HONG-CHANG (范宏昌), ZHANG YI-TONG (张贻瞳), JIN XIN (金新), TONG HONG-WU (童红武), YAO XI-XIAN (姚希贤). THERMALLY ACTIVATED FLUX MOTION IN HIGH-Tc SUPERCONDUCTORS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 123 -129 .
[2] TIAN REN-HE (田人和), MANFRED FINK. THE BEAM TEMPERATURE AND ENERGY BROADENING OF A CHARGED-PARTICLE BEAM IN AN AXIALLY SYMMETRIC MAGNETIC FIELD[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 86 -93 .
[3] ZHANG TIAN-CAI (张天才), XIE CHANG-DE (谢常德), PENG KUN-CHI (彭堃墀). A FULL QUANTUM THEORY OF THE THREE-MODE INTERACTIONS INSIDE AN OPO CAVITY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 94 -103 .
[4] PENG WEN-JI (彭文基), LI QING-XING (李庆行), YU ZHEN-XIN (余振新), AN NING (安宁), XU MAI (徐迈). STUDIES ON THE DYNAMICS OF OPTICAL BISTABILITY SWITCHING IN THE INTERNAL FABRY-PEROT CAVITY WITH A CdSxSe1-x-DOPED GLASS CHANNEL WAVEGUIDE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(3): 183 -190 .
[5] ZHAO MING-XIN (赵明信), LIU ZI-DONG (刘子东), LI LI-YUN (李丽云), LI SEN-LIN (李森林), WU ZHENG-HUA (吴正华), ZENG XI-ZHI (曾锡之). MEASUREMENTS OF RELAXATION OF SPIN POLARIZED 129Xe NUCLEI IN HIGH MAGNETIC FIELDS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 15 -21 .
[6] JIN JI-RONG (金继荣), JIN XIN (金新), JI HE-LIN (吉和林), ZHANG YI-TONG (张贻瞳), XU XIAO-NONG (徐小农), SHI ZHI-XIANG (施智祥), ZHANG ZHI-PING (张治平), YAO XI-XIAN (姚希贤), ZHUANG RUI-FANG (庄瑞芳), XIE HUI (谢晖). INVESTIGATION OF THE EFFECT OF SLOW NEUTRON IRRADIATION ON HALOGEN-DOPED HIGH-Tc SUPERCONDUCTORS AND ITS MECHANISM[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 56 -64 .
[7] LIU JUN-MING (刘俊明), LIU ZHI-GUO (刘治国), WU ZHUANG-CHUN (吴状春). SCALING LAW FOR CBr4-C2Cl6 LAMELLAR EUTECTIC IN DIRECTIONAL SOLIDIFICATION[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 782 -790 .
[8] TANG GUI-DE (唐贵德), NIE XIANG-FU (聂向富), SUN HUI-YUAN (孙会元), MENG GUANG-QING (孟广庆), HAN BAO-SHAN (韩宝善). ANNIHILATION OF VERTICAL-BLOCH-LINE CHAINS IN THE WALLS OF THE SECOND KIND OF DUMBBELL DOMAINS SUBJECTED TO AN IN-PLANE FIELD[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(11): 863 -869 .
[9] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), CHEN DIE-YAN (陈瓞延). NEW AUTOIONIZING STATES NEAR THE FIRST IONIZATION LIMIT OF RARE EARTH ELEMENT Dy[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(12): 917 -924 .
[10] NING XIAO-GUANG (宁小光), PAN JIN (潘进), HU KUI-YI (胡魁毅), YE HENG-QIANG (叶恒强). INVESTIGATIONS ABOUT THE DYNAMICAL ELECTRON SCATTERING BY A HEXAGON-PRISM $\beta$-Si3N4 WHISKER[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(2): 113 -119 .