Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047102    DOI: 10.1088/1674-1056/adb680
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure of a narrow-gap semiconductor KAg3Te2

Rong Feng(冯荣)1, Haotian Zheng(郑昊天)1, Haoran Liu(刘浩然)1, Binru Zhao(赵彬茹)1, Xunqing Yin(尹训庆)1, Zhihua Liu(刘智华)1, Feng Liu(刘峰)1, Guohua Wang(王国华)1, Xiaofeng Xu(许晓峰)2, Wentao Zhang(张文涛)1,3, Weidong Luo(罗卫东)1, Wei Zhou(周苇)4, and Dong Qian(钱冬)1,5,6,†
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 School of Physics, Zhejiang University of Technology, Hangzhou 310023, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
6 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  KAg3Te2 with a layered crystal structure has been predicted to be a possible topological insulator. Through electrical transport measurements, we revealed its semiconducting behavior with a narrow band gap of 0.4 eV and p-type character. The infrared transmission spectra of single crystals yielded an optical band gap of 0.3 eV. Angle-resolved photoemission spectroscopy reveals a bulk energy gap at the Brillouin zone center, with no observable surface state, suggesting that KAg3Te2 is a topological trivial narrow-gap semiconductor. The experimentally determined effective mass of the holes in KAg3Te2 is very small (0.12me). The valence band maximum is quasi-two-dimensional, while the conduction band minimum is fully three-dimensional. Such intriguing dimensional anisotropy can be attributed to the distinct orbital contributions from K, Ag, and Te atoms to the respective bands.
Keywords:  KAg3Te2 crystals      narrow-gap semiconductor      angle-resolved photoemission spectroscopy      small effective hole mass      dimensional anisotropy  
Received:  02 January 2025      Revised:  13 February 2025      Accepted manuscript online:  15 February 2025
PACS:  71.20.Nr (Semiconductor compounds)  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Key Research and Development Program of China and the National Natural Science Foundation of China.
Corresponding Authors:  Dong Qian     E-mail:  dqian@sjtu.edu.cn

Cite this article: 

Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬) Electronic structure of a narrow-gap semiconductor KAg3Te2 2025 Chin. Phys. B 34 047102

[1] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electron. Mater. 5 1800904
[2] Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208
[3] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[4] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[5] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[6] Burschka C and Bronger W 1977 Z. Anorg. Allg. Chem. 430 61
[7] Rettie A J E, Malliakas C D, Botana A S, Hodges J M, Han F, Huang R, Chung D Y and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 9193
[8] Rettie A J E, Ding J, Zhou X, Johnson M J, Malliakas C D, Osti N C, Chung D Y, Osborn R, Delaire O, Rosenkranz S and Kanatzidis M G 2021 Nat. Mater. 20 1683
[9] Wang C, Cheng R and Chen Y 2023 Chem. Mater. 35 1780
[10] He J, Xia Y, Lin W, Pal K, Zhu Y, Kanatzidis M G and Wolverton C 2022 Adv. Funct. Mater. 32 2108532
[11] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[12] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[13] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[14] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[18] Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C and He J 2017 Phys. Rev. Lett. 119 116401
[19] Strauss A J 1967 Phys. Rev. 157 608
[20] Chasapis T C, Lee Y, Hatzikraniotis E, Paraskevopoulos K M, Chi H, Uher C and Kanatzidis M G 2015 Phys. Rev. B 91 085207
[21] Chen Z, Dong J, Giorgetti C, Papalazarou E, Marsi M, Zhang Z, Tian B, Ma Q, Cheng Y, Rueff J P, Taleb-Ibrahimi A and Perfetti L 2020 2D Mater. 7 035027
[1] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[2] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[3] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[4] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[5] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[6] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[7] Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). Chin. Phys. B, 2024, 33(11): 117101.
[8] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[9] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[10] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[11] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[12] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
No Suggested Reading articles found!