1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 School of Physics, Zhejiang University of Technology, Hangzhou 310023, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 6 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract KAgTe with a layered crystal structure has been predicted to be a possible topological insulator. Through electrical transport measurements, we revealed its semiconducting behavior with a narrow band gap of eV and p-type character. The infrared transmission spectra of single crystals yielded an optical band gap of eV. Angle-resolved photoemission spectroscopy reveals a bulk energy gap at the Brillouin zone center, with no observable surface state, suggesting that KAgTe is a topological trivial narrow-gap semiconductor. The experimentally determined effective mass of the holes in KAgTe is very small (). The valence band maximum is quasi-two-dimensional, while the conduction band minimum is fully three-dimensional. Such intriguing dimensional anisotropy can be attributed to the distinct orbital contributions from K, Ag, and Te atoms to the respective bands.
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬) Electronic structure of a narrow-gap semiconductor KAg3Te2 2025 Chin. Phys. B 34 047102
[1] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electron. Mater. 5 1800904 [2] Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208 [3] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [4] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [5] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [6] Burschka C and Bronger W 1977 Z. Anorg. Allg. Chem. 430 61 [7] Rettie A J E, Malliakas C D, Botana A S, Hodges J M, Han F, Huang R, Chung D Y and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 9193 [8] Rettie A J E, Ding J, Zhou X, Johnson M J, Malliakas C D, Osti N C, Chung D Y, Osborn R, Delaire O, Rosenkranz S and Kanatzidis M G 2021 Nat. Mater. 20 1683 [9] Wang C, Cheng R and Chen Y 2023 Chem. Mater. 35 1780 [10] He J, Xia Y, Lin W, Pal K, Zhu Y, Kanatzidis M G and Wolverton C 2022 Adv. Funct. Mater. 32 2108532 [11] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475 [12] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 [13] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [14] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [17] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [18] Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C and He J 2017 Phys. Rev. Lett. 119 116401 [19] Strauss A J 1967 Phys. Rev. 157 608 [20] Chasapis T C, Lee Y, Hatzikraniotis E, Paraskevopoulos K M, Chi H, Uher C and Kanatzidis M G 2015 Phys. Rev. B 91 085207 [21] Chen Z, Dong J, Giorgetti C, Papalazarou E, Marsi M, Zhang Z, Tian B, Ma Q, Cheng Y, Rueff J P, Taleb-Ibrahimi A and Perfetti L 2020 2D Mater. 7 035027
Manipulation of band gap in 1T-TiSe2 via rubidium deposition Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[3]
Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.