Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067103    DOI: 10.1088/1674-1056/ad39d4
RAPID COMMUNICATION Prev   Next  

Anisotropic metal-insulator transition in strained VO2(B) single crystal

Zecheng Ma(马泽成)1,†, Shengnan Yan(闫胜楠)1,†, Zenglin Liu(刘增霖)1, Tao Xu(徐涛)2, Fanqiang Chen(陈繁强)1, Sicheng Chen(陈思成)1, Tianjun Cao(曹天俊)1, Litao Sun(孙立涛)2, Bin Cheng(程斌)3, Shi-Jun Liang(梁世军)1,‡, and Feng Miao(缪峰)1,§
1 Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China;
3 Institute of Interdisciplinary of Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential technological applications. Unlike the traditional rutile (R) phase, bronze-phase vanadium dioxide [VO$_{2}$(B)] exhibits an in-plane anisotropic structure. When subjected to stretching along distinct crystallographic axes, VO$_{2}$(B) may further manifest the axial dependence in lattice-electron interactions, which is beneficial for gaining insights into the anisotropy of electronic transport. Here, we report an anisotropic room-temperature metal-insulator transition in single-crystal VO$_{2}$(B) by applying in-situ uniaxial tensile strain. This material exhibits significantly different electromechanical responses along two anisotropic axes. We reveal that such an anisotropic electromechanical response mainly arises from the preferential arrangement of a strain-induced unidirectional stripe state in the conductive channel. This insulating stripe state could be attributed to the in-plane dimerization within the distorted zigzag chains of vanadium atoms, evidenced by strain-modulated Raman spectra. Our work may open up a promising avenue for exploiting the anisotropy of metal-insulator transition in vanadium dioxide for potential technological applications.
Keywords:  vanadium dioxide      strain      anisotropy      electrical transport  
Received:  15 February 2024      Revised:  20 March 2024      Accepted manuscript online:  03 April 2024
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  72.80.Ga (Transition-metal compounds)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  07.10.Pz (Instruments for strain, force, and torque)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFF1203600), the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 12322407, 61921005, and 12074176), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000).
Corresponding Authors:  Shi-Jun Liang, Feng Miao     E-mail:  sjliang@nju.edu.cn;miao@nju.edu.cn

Cite this article: 

Zecheng Ma(马泽成), Shengnan Yan(闫胜楠), Zenglin Liu(刘增霖), Tao Xu(徐涛), Fanqiang Chen(陈繁强), Sicheng Chen(陈思成), Tianjun Cao(曹天俊), Litao Sun(孙立涛), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰) Anisotropic metal-insulator transition in strained VO2(B) single crystal 2024 Chin. Phys. B 33 067103

[1] Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W, Khanal D R, Ogletree D F, Grossman J C and Wu J 2009 Nat. Nanotechnol. 4 732
[2] Tselev A, Luk’yanchuk I A, Ivanov I N, Budai J D, Tischler J Z, Strelcov E, Kolmakov A and Kalinin S V 2010 Nano Lett. 10 4409
[3] Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z and Gao C 2019 Appl. Phys. Lett. 115 251605
[4] Liu K, Lee S, Yang S, Delaire O and Wu J 2018 Mater. Today 21 875
[5] Shvets P, Dikaya O, Maksimova K and Goikhman A 2019 J. Raman Spectrosc. 50 1226
[6] Hu P, Hu P, Vu T D, Li M, Wang S, Ke Y, Zeng X, Mai L and Long Y 2023 Chem. Rev. 123 4353
[7] Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G and Parkin S S P 2013 Nat. Phys. 9 661
[8] Fan L L, Chen S, Luo Z L, Liu Q H, Wu Y F, Song L, Ji D X, Wang P, Chu W S, Gao C, Zou C W and Wu Z Y 2014 Nano Lett. 14 4036
[9] Liu M K, Wagner M, Abreu E, Kittiwatanakul S, McLeod A, Fei Z, Goldflam M, Dai S, Fogler M M, Lu J, Wolf S A, Averitt R D and Basov D N 2013 Phys. Rev. Lett. 111 096602
[10] Yang M, Yang Y, Bin H, Wang L, Hu K, Dong Y, Xu H, Huang H, Zhao J, Chen H, Song L, Ju H, Zhu J, Bao J, Li X, Gu Y, Yang T, Gao X, Luo Z and Gao C 2016 Sci. Rep. 6 23119
[11] Hu K, Yang Y, Hong B, Zhao J, Luo Z, Li X, Zhang X, Gu Y, Gao X and Gao C 2017 J. Alloys Compd. 699 575
[12] Jones A C, Berweger S, Wei J, Cobden D and Raschke M B 2010 Nano Lett. 10 1574
[13] Hu B, Ding Y, Chen W, Kulkarni D, Shen Y, Tsukruk V V and Wang Z L 2010 Adv. Mater. 22 5134
[14] Cao J, Gu Y, Fan W, Chen L Q, Ogletree D F, Chen K, Tamura N, Kunz M, Barrett C, Seidel J and Wu J 2010 Nano Lett. 10 2667
[15] Guo H, Chen K, Oh Y, Wang K, Dejoie C, Syed Asif S A, Warren O L, Shan Z W, Wu J and Minor A M 2011 Nano Lett. 11 3207
[16] Park J H, Coy J M, Kasirga T S, Huang C, Fei Z, Hunter S and Cobden D H 2013 Nature 500 431
[17] Oka Y, Yao T, Yamamoto N, Ueda Y and Hayashi A 1993 J. Solid State Chem. 105 271
[18] Corr S A, Grossman M, Shi Y, Heier K R, Stucky G D and Seshadri R 2009 J. Mater. Chem. 19 4362
[19] Lourembam J, Srivastava A, La-o-vorakiat C, Rotella H, Venkatesan T and Chia E E 2015 Sci. Rep. 5 9182
[20] Popuri S R, Artemenko A, Decourt R, Josse M, Chung U C, Michau D, Maglione M, Villesuzanne A and Pollet M 2015 J. Phys. Chem. C 119 25085
[21] Lourembam J, Srivastava A, La-o-Vorakiat C, Cheng L, Venkatesan T and Chia E E M 2016 Sci. Rep. 6 25538
[22] Zhang Y, Wang X, Zhou Y, Lai H, Liu P, Chen H, Wang X and Xie W 2021 Nano Lett. 22 485
[23] Wang Y, Zhu J, Yang W, Wen T, Pravica M, Liu Z, Hou M, Fei Y, Kang L, Lin Z, Jin C and Zhao Y 2016 Nat. Commun. 7 12214
[24] Théobald F, Cabala R and Bernard J 1976 J. Solid State Chem. 17 431
[25] Liu J, Li Q, Wang T, Yu D and Li Y 2004 Angew. Chem. Int. Ed. 43 5048
[26] Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W and Miao F 2020 Adv. Mater. 32 2004533
[27] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F and Zhang Y 2017 Nano Lett. 17 6097
[28] An C, Xu Z, Shen W, Zhang R, Sun Z, Tang S, Xiao Y F, Zhang D, Sun D, Hu X, Hu C, Yang L and Liu J 2019 ACS Nano 13 3310
[29] Shi R, Chen Y, Cai X, Lian Q, Zhang Z, Shen N, Amini A, Wang N and Cheng C 2021 Nat. Commun. 12 4214
[30] Wang X J, Li H D, Fei Y J, Wang X, Xiong Y Y, Nie Y X and Feng K A 2001 Appl. Surface Sci. 177 8
[31] Huang C, Chen L, Xu G and Miao L 2012 J. Sol-Gel Sci. Technol. 63 103
[32] Zhang S, Fu J, Su Q, Wu L and Li X 2016 Rare Metal Mater. Eng. 45 1374
[33] Zallen R and Slade M 1974 Phys. Rev. B 9 1627
[34] Hsueh H C, Warren M C, Vass H, Ackland G J, Clark S J and Crain J 1996 Phys. Rev. B 53 14806
[35] Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V and Wu J 2017 Nano Lett. 17 2512
[36] Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J and Eom C B 2018 Science 362 1037
[37] Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J and Welland M E 2009 Nano Lett. 9 3392
[1] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[2] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[3] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[4] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[5] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[6] Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2
De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林). Chin. Phys. B, 2024, 33(8): 088101.
[7] First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)
Jiale Chen(陈佳乐) and Jun Hu(胡军). Chin. Phys. B, 2024, 33(8): 087502.
[8] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[9] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[10] Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2
Yonglai Liu(刘永来), Xitong Xu(许锡童), Miao He(何苗), Haitian Zhao(赵海天), Qingqi Zeng(曾庆祺), Xingyu Yang(杨星宇), Youming Zou(邹优鸣), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(5): 057402.
[11] Analytical solutions to the precession relaxation of magnetization with uniaxial anisotropy
Ze-Nan Zhang(张泽南), Zhen-Lin Jia(贾镇林), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2024, 33(4): 047502.
[12] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[13] Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海). Chin. Phys. B, 2024, 33(3): 037801.
[14] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[15] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
No Suggested Reading articles found!