Abstract Pd/CoMnSi (CMS)/Co/Pd multilayer films were designed based on the idea of combining highly spin-polarized materials with strong perpendicular magnetic anisotropy (PMA) films. The PMA of Pd/CMS/Co/Pd multilayer films was studied by optimizing the growth conditions and thickness of each film layer. The optimal structure of the multilayer films was Pd(6 nm)/CMS(5 nm)/Co(2 nm)/Pd(1 nm). Its abnormal Hall resistance (), coercivity () and effective magnetic anisotropy constant () are 0.08 , 284 Oe and 1.36 Merg/cm, respectively, which are 100%, 492%, and 183% higher than the corresponding values (0.04 , 48 Oe, and 0.48 Merg/cm) of the Pd(6 nm)/Co(1 nm)/Pd(3 nm) trilayer films. The analysis shows that the increases of the above values are the result of the Pd/CMS interface effect and CMS/Co interface ferromagnetic (FM) coupling, and that it is closely related to the thickness of each film layer in the multilayer films and the growth conditions of the multilayer films.
Fund: Project supported by Shandong Provincial Natural Science Foundation, China (Grant No. ZR2022ME059).
Corresponding Authors:
Wentian Cao, Shuyun Wang
E-mail: caowentian@sdnu.edu.cn;wangshuyun65@163.com
Cite this article:
Xiaoqi Qin(秦晓奇), Jiaxing Tan(谭家兴), Xianwu Xiu(修显武), Wentian Cao(曹文田), and Shuyun Wang(王书运) Perpendicular magnetic anisotropy of Pd/Co2MnSi/Co/Pd multilayer 2025 Chin. Phys. B 34 037502
[1] Draaisma H J G and de Jonge W J M de 1987 J. Magn. Magn. Mater. 66 351 [2] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura and Ohno H 2010 Nat. Mater. 9 721 [3] Sato H, Yamanouchi M, Ikeda S, Fukami S, Matsukura F and Ohno H 2012 Appl. Phys. Lett. 101 022414 [4] Wang K, Tang Y, Liu J, You C Y and You L 2022 Mater. Sci. Eng. B 278 115629 [5] Wen Z C, Sukegawa H, Mitani S and Inomata K 2011 Appl. Phys. Lett. 98 242507 [6] Jodi M, Thomas L, Liu H L, Zhu J, Lee Y J, Le S, Tong R Y, Patel S and Sundar V 2019 Sci. Rep. 9 19407 [7] Sahoo A K, Chelvane J and Mohanty J 2021 Phys. Scr. 96 035803 [8] Thorarinsdottir K A, Thorbjarnardotti B R, Arnalds U B and Magnus F 2023 J. Phys. Condens. Matter 35 205802 [9] Zhu L J and Ralph D C 2023 Nat. Commun. 14 1778 [10] Liu Q B, Zhu L J, Zhang X, Muller D and Ralph D 2022 Appl. Phys. Rev. 9 021402 [11] PeriaWK, Katz M B,Wang J P, Crowell P and Gopman D B 2024 Sci. Rep. 14 13290 [12] Wang X J, Krylyuk S, Josell D, Zhang D L, Lyu D, Wang J P and Gopman D B 2021 AIP Adv. 11 025106 [13] Stellhorn A, Sarkar A, Kentzinger E, Waschk M, Schöffmann P, Schröder S, Abuladze G, Fu Z, Pipich V and Brückel T 2019 J. Magn. Magn. Mater. 476 483 [14] Zhu L J, Nie S H, Xiong P, Schlottmann P and Zhao J H 2016 Nat. Commun. 7 10817 [15] Hussain R, Aakansha, Brahma B, Basumatary R K, Brahma R, Ravi S and Srivastava S K 2019 J. Supercond. Nov. Magn. 32 4027 [16] Li M H, Zhang S J, Wang S H, Li Y Z, Liu L, Chen Y, Shi H and Yu G H 2022 Curr. Appl. Phys. 34 29 [17] Xiao X, Sun L, Luo Y M, Zhang D, Liang J H and Wu Y Z 2018 J. Phys. D: Appl. Phys. 51 11500 [18] Won Y C and Lim S H 2021 Sci. Rep. 11 10779 [19] Wen Z C, Sukegawa H, Mitani S and Inomata K 2011 Appl. Phys. Lett. 98 242507 [20] Huang H B, Ma X Q, Liu Z H and Chen L Q 2014 J. Alloys Compd. 597 230 [21] Bae T J, Ko J, Lee S, Cha J and Hong J 2016 J. Appl. Phys. 55 013001 [22] Amari S, Mebsout R, Eçabih S M, Abbar B and Bouhafs B 2014 Intermetallics. 44 26 [23] Wang K, Dong S, Xu Z and Huang Y 2016 Mater. Lett. 180 140 [24] Liu Y W, Zhang J Y, Jiang S L, Liu Q Q, Li X J and Yu G H 2016 J. Magn. Magn. Mater. 420 70 [25] Sbiaa R, Al-Omari I A, AlBahri M, Kharel P R, Ranjbar M, Akerman J and Sellmyer D J 2017 J. Magn. Magn. Mater. 441 585 [26] Gottwald M, Girod S, Andrieu S and Mangin S 2010 Mater. Sci. Eng. 12 012018 [27] Gladczuk L, Lasek K, Puzniak R, Sawicki M, Aleshkevych P, Paszkowica W, Minikayev R, Demchenko I N, Syryanyy Y and Przyslupski P 2017 J. Phys. D 50 485002 [28] Tao X D, Liu Q, Mao B F, Yu R, Feng Z and Sun L, et al. 2018 Sci. Adv. 4 1670 [29] Bai Q W, Jiang J, Guo B, Cao W T, Xiu X W and Wang S Y 2022 J. Alloys Compd. 897 163114 [30] Nagaosa N, Sinova J, Onoda S, et al. 2010 Rev. Mod. Phys. 82 1539 [31] Qin X Q, Guo B, Tan J X, Xiu X W, Cao W T and Wang S Y 2024 J. Magn. Magn. Mater. 600 172143 [32] Boeglin C, Beaurepaire E, Haile V, Lopez-Flotrs V, Stamm C, Pontius N, Durr H A and Bigot J Y 2010 Nature 27 465 [33] Arora M, Hubner R, Suess D, Heinrich B and Gir E 2017 Phys. Rev. B. 96 024401 [34] Suzuki T, Notarys H, Dobbertin D C, et al. 1992 IEEE Trans. Magn. 28 2754 [35] Sun A C, Hsu J H, Kuo P C, et al. 2007 IEEE Trans. Magn. 43 2130 [36] Jiang J, Xiu X W, Wen K L, Cao W T, He Y and Wang S Y 2020 J. Magn. Magn. Mater. 505 166709 [37] Lee T Y, Won Y C, Son D S, Lim S H and Lee S R 2014 IEEE Magn. Lett. 5 1000104
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.