Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016802    DOI: 10.1088/1674-1056/ae1191
RAPID COMMUNICATION Prev   Next  

Magnetic anisotropy in MnGe thin films and its evolution under external magnetic fields

Zhaohang Li(李朝航)1,†, Fanbao Meng(孟凡保)1,†, Kesen Zhao(赵科森)1,2, Tao Qi(齐涛)1, Shihao Liu(刘仕豪)1, Zongyao Huang(黄宗耀)1, Feixiong Quan(全飞熊)1, Zhiwei Wang(王智炜)1, Zhengjie Wang(王郑杰)1, Xigang Luo(罗习刚)1, Jianjun Ying(应剑俊)1, Yubin Hou(侯玉斌)2, Wenjie Meng(孟文杰)2, Qingyou Lu(陆轻铀)1,2, and Xianhui Chen(陈仙辉)1,3,4,‡
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China;
3 CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China;
4 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
Abstract  Chiral magnets have attracted considerable attention due to their intricate magnetic properties, among which B20 compounds constitute a quintessential class that has gained significant focus, particularly in the study of skyrmions. MnGe, as a member of the B20 family, exhibits a more complex magnetic structure compared with other materials with similar crystal structures. In this work, we successfully synthesized high-quality MnGe thin films and characterized their magnetoresistance, $M$—$H$ curves, magneto-Seebeck effect, and magnetic force microscopy (MFM) images, all of which demonstrate pronounced magnetic anisotropy. Notably, the Seebeck coefficient exhibits a plateau at low magnetic fields when the magnetic field is applied in the film plane, indicating a field region in which the magnetic structure remains stable. MFM imaging further reveals magnetic transitions within the MnGe films when the magnetic field is oriented along the film plane. These findings are crucial for advancing our understanding of the magnetic ground state of MnGe and the evolution of its magnetic structure under an applied external magnetic field.
Keywords:  molecular beam epitaxy      chiral magnets      thin film      magnetic anisotropy      magnetic force microscopy  
Received:  01 September 2025      Revised:  09 October 2025      Accepted manuscript online:  10 October 2025
PACS:  68.37.Rt (Magnetic force microscopy (MFM))  
  68.55.-a (Thin film structure and morphology)  
  73.61.-r (Electrical properties of specific thin films)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12488201, 12274390, 12304035, and 51627901), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), the National Key R&D Program of the MOST of China (Grant No. 2022YFA1602600), the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021- 08), and the National Key R&D Program of China (Grant No. 2023YFA1607701). We thank the staff members of the SMA System (https://cstr.cn/31125.02.SHMFF.SM2.SMA) at the Steady High Magnetic Field Facility, CAS (https://cstr.cn/31125.02.SHMFF), for providing technical support and assistance in data collection and analysis.
Corresponding Authors:  Xianhui Chen     E-mail:  chenxh@ustc.edu.cn

Cite this article: 

Zhaohang Li(李朝航), Fanbao Meng(孟凡保), Kesen Zhao(赵科森), Tao Qi(齐涛), Shihao Liu(刘仕豪), Zongyao Huang(黄宗耀), Feixiong Quan(全飞熊), Zhiwei Wang(王智炜), Zhengjie Wang(王郑杰), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Yubin Hou(侯玉斌), Wenjie Meng(孟文杰), Qingyou Lu(陆轻铀), and Xianhui Chen(陈仙辉) Magnetic anisotropy in MnGe thin films and its evolution under external magnetic fields 2026 Chin. Phys. B 35 016802

[1] Mühlbauer S, Binz B, Jonietz F, Pflederer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[2] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[3] Li Y F, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[4] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[5] Gayles J, Freimuth F, Schena T, Lani G, Mavropoulos P, Duine R A, Blugel S, Sinova J and Mokrousov Y 2015 Phys. Rev. Lett. 115 036602
[6] Shanavas K V and Satpathy S 2016 Phys. Rev. B 93 195101
[7] Dhital C, DeBeer-Schmitt L, Zhang Q, Xie W, Young D P and DiTusa J F 2017 Phys. Rev. B 96 214425
[8] Turgut E, Paik H J, Nguyen K, David A M, Darrell G S and Gregory D F 2018 Phys. Rev. Mater. 2 074404
[9] Tanigaki T, Shibata K, Kanazawa N, Yu X Z, Onose Y, Park H S, Shindo D and Tokura Y 2015 Nano Lett. 15 5438
[10] Kanazawa N, White J S, Rnnow H M, Dewhurst C D, Morikawa D, Shibata K, Arima T, Kagawa F, Tsukazaki A, Kozuka Y, Ichikawa M, Kawasaki M and Tokura Y 2017 Phys. Rev. B 96 220414
[11] Fujishiro Y, Kanazawa N, Kurihara R, Ishizuka H, Hori T, Yasin F S, Yu X, Tsukazaki A, Ichikawa M, Kawasaki M, Nagaosa N, Tokunaga M and Tokura Y 2021 Nat. Commun. 12 317
[12] Kanazawa N, Kitaori A, White J S, Ukleev V, Rnnow H M, Tsukazaki A, Ichikawa M, Kawasaki M and Tokura Y 2020 Phys. Rev. Lett. 125 137202
[13] Hayashi Y, Okamura Y, Kanazawa N, Yu T, Koretsune T, Arita R, Tsukazaki A, Ichikawa M, Kawasaki M, Tokura Y and Takahashi Y 2021 Nat. Commun. 12 5974
[14] Repicky J, Wu P K, Liu T, Corbett J P, Zhu T, Cheng S, Ahmed A S, Takeuchi N, Guerrero-Sanchez J, Randeria M, Kawakami R K and Gupta J A 2021 Science 374 1484
[15] Pomjakushin V, Plokhikh I, White J S, Fujishiro Y, Kanazawa N, Tokura Y and Pomjakushina E 2023 Phys. Rev. B 107 024410
[16] Engelke J, Menzel D and Dyadkin V A 2013 J. Phys.: Condens. Matter 25 472201
[17] Kanazawa N, Nii Y, Zhang X X, Mishchenko A S, De Filippis G, Kagawa F, Iwasa Y, Nagaosa N and Tokura Y 2016 Nat. Commun. 7 11622
[18] Fujishiro Y, Kanazawa N, Shimojima T, et al. 2018 Nat. Commun. 9 408
[19] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M and Yang H 2017 Nat. Commun. 8 14761
[20] JiangWJ, Zhang S,Wang X, Phatak C,Wang Q, ZhangW, Jungfleisch M B, Pearson J E, Liu Y Z, Zang J D, Cheng X M, Petford-Long A, Hoffmann A and te Velthuis S G E 2019 Phys. Rev. B 99 104402
[21] Wortmann D, Heinze S, Kurz P, Bihlmayer G and Blugel S 2001 Phys. Rev. Lett. 86 4132
[22] Schlickum U, Wulfhekel W and Kirschner J 2003 Appl. Phys. Lett. 83 2016
[23] Milde P, Khler L, Neuber E, Ritzinger P, Garst M, Bauer A, Pfleiderer C, Berger H and Eng L M 2020 Phys. Rev. B 102 024426
[24] Li H, Qi X Y, Wu J, Zeng Z Y, Wei J and Zhang H 2013 ACS Nano 7 2842
[25] Xiang K, Hou Y B, Wang J H, Zhang J, Feng Q Y, Wang Z, Meng W J, Lu Q Y and Lu Y L 2022 Rev. Sci. Instrum. 93 093706
[26] Guo T F, Wang J H, Meng W J, Zhang J, Feng Q Y, Wang Z, Jin F, Wu WB, Lu Q Y, Hou Y B and Lu Q Y 2020 Ultramicroscopy 217 113071
[27] Schoenherr P, Mller J, Khler L, Rosch A, Kanazawa N, Tokura Y, Garst M and Meier D 2018 Nat. Phys. 14 465
[28] Schoenherr P, Stepanova M, Lysne E N, Kanazawa N, Tokura Y, Bergman A and Meier D 2021 ACS Nano 15 17508
[29] Dussaux A, Schoenherr P, Koumpouras K, Chico J, Chang K, Lorenzelli L, Kanazawa N, Tokura Y, Garst M, Bergman A, Degen C L and Meier D 2016 Nat. Commun. 7 12430
[30] Kanazawa N, White J S, Rnnow H M, Dewhurst C D, Fujishiro Y, Tsukazaki A, Kozuka Y, Kawasaki M, Ichikawa M, Kagawa F and Tokura Y 2016 Phys. Rev. B 94 184432
[31] Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kikkawa A, Taguchi Y, Kawasaki M, Ichikawa M, Kagawa F and Tokura Y 2015 J. Phys. Soc. Jpn. 84 104708
[1] Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co–Ni multilayer/Ta]n superlattices
Xiaomiao Yin(阴小苗), Zhengxiao Li(李政霄), Jun Kang(康俊), Changmin Xiong(熊昌民), and Lijun Zhu(朱礼军). Chin. Phys. B, 2026, 35(1): 018502.
[2] Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition
Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋). Chin. Phys. B, 2025, 34(7): 077401.
[3] Perpendicular magnetic anisotropy of Pd/Co2MnSi/Co/Pd multilayer
Xiaoqi Qin(秦晓奇), Jiaxing Tan(谭家兴), Xianwu Xiu(修显武), Wentian Cao(曹文田), and Shuyun Wang(王书运). Chin. Phys. B, 2025, 34(3): 037502.
[4] Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface
Abeer S Alnahdi and Taza Gul. Chin. Phys. B, 2025, 34(2): 024701.
[5] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[6] Instability of nanofluid film flow under external electric field: Linear and weakly nonlinear analysis
Xinshan Li(李欣珊), Danting Xue(薛丹婷), Ruigang Zhang(张瑞岗), Quansheng Liu(刘全生), and Zhaodong Ding(丁兆东). Chin. Phys. B, 2025, 34(12): 124701.
[7] Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface
Siyu Huo(霍思宇), Jieying Li(李洁莹), Yuzhou Liu(刘宇舟), Desheng Cai(蔡德胜), Yitong Gu(谷易通), Haoen Chi(迟浩恩), Wenhui Pang(庞文慧), Gan Yu(于淦), Xiaoying Shi(史晓影), Wenguang Zhu(朱文光), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2025, 34(10): 106801.
[8] Temperature and angle dependence of magnetic damping in manganite thin films
Jinghua Ren(任京华), Yuelin Zhang(张跃林), Miming Cai(蔡米铭), Yuhan Li(李语涵), Mingming Li(李明明), Tianqi Wang(王天琦), Dekun Shen(沈德坤), Hongyu Zhou(周鸿渝), Xiangwei Zhu(朱祥维), and Jinxing Zhang(张金星). Chin. Phys. B, 2025, 34(10): 107504.
[9] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
[10] Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军). Chin. Phys. B, 2025, 34(10): 107202.
[11] Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明), Ru Bai(白茹), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(1): 017501.
[12] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[13] Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures
Tirui Xia(夏体瑞), Xiaotian Yang(杨笑天), Yifan Zhang(张逸凡), Xinqi Liu(刘馨琪), Xinyu Cai(蔡新雨), Chang Liu(刘畅), Qi Yao(姚岐), Xufeng Kou(寇煦丰), and Wenbo Wang(王文波). Chin. Phys. B, 2024, 33(8): 087504.
[14] First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)
Jiale Chen(陈佳乐) and Jun Hu(胡军). Chin. Phys. B, 2024, 33(8): 087502.
[15] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
No Suggested Reading articles found!