| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Doping-dependent optical properties in YBCO superconducting films via BaHfO3 nanocrystal addition |
| Shulun Han(韩淑伦)†, Yuanjie Ning(宁苑杰)†, Jing Chen(陈静), Yanqun Guo(郭艳群)‡, Zicong Yang(杨子聪), Ping Zhu(朱萍), Zhigang Zeng(曾志刚), Chuanbing Cai(蔡传兵), Xinmao Yin(尹鑫茂)§, and Lijun Tian(田立君)¶ |
| Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China |
|
|
|
|
Abstract This study investigates the effect of BaHfO$_{3}$ (BHO) addition on the optical properties of YBa$_{2}$Cu$_{3}$O$_{7-\delta }$ (YBCO) superconducting thin films using spectroscopic ellipsometry. Through Raman spectroscopy and SEM analysis, optimal 10-min Ar ion etching effectively removes surface $a$-axis-oriented grains and Ba-Cu-O impurities, enhancing surface quality. Optical conductivity analysis reveals a doping-dependent evolution: 10 % BHO doping maximizes free carrier density and interband transition efficiency, attributed to optimized Cu-O bond contraction and reduced lattice distortions. Higher doping induces defect clustering, carrier scattering, and redshifted transitions due to lattice expansion. Dielectric function and loss function analyses confirm enhanced plasmonic behavior and flux pinning at 10 % doping, while excessive doping degrades electronic transitions. These results highlight the critical role of controlled BHO addition and surface treatment in tailoring the optical and superconducting properties of YBCO, offering insights into the interplay among doping, carrier dynamics, and electronic structure in high-temperature superconductors (HTS).
|
Received: 11 March 2025
Revised: 10 June 2025
Accepted manuscript online: 11 July 2025
|
|
PACS:
|
74.72.h
|
|
| |
74.25.Gz
|
(Optical properties)
|
| |
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
| |
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52172271, 12374378, 52307026, and 52477022), the National Key Research and Development Program of China (Grant No. 2022YFE03150200), and Shanghai Science and Technology Innovation Program (Grant No. 23511101600). |
Cite this article:
Shulun Han(韩淑伦), Yuanjie Ning(宁苑杰), Jing Chen(陈静), Yanqun Guo(郭艳群), Zicong Yang(杨子聪), Ping Zhu(朱萍), Zhigang Zeng(曾志刚), Chuanbing Cai(蔡传兵), Xinmao Yin(尹鑫茂), and Lijun Tian(田立君) Doping-dependent optical properties in YBCO superconducting films via BaHfO3 nanocrystal addition 2026 Chin. Phys. B 35 027404
|
[1] Obradors X, Puig T, Pomar A, et al. 2006 Supercond. Sci. Technol. 19 S13 [2] Yazdani-Asrami M, Seyyedbarzegar S, Sadeghi A, De Sousa W T B and Kottonau D 2022 Supercond. Sci. Technol. 35 083002 [3] Zhou Y H, Park D and Iwasa Y 2023 Natl. Sci. Rev. 10 nwad001 [4] Jha A K and Matsumoto K 2019 Front. Phys. 7 82 [5] Vulusala G V S and Madichetty S 2018 Int. J. Energy Res. 42 358 [6] Macmanus-Driscoll J L and Wimbush S C 2021 Nat. Rev. Mater. 6 587 [7] Obradors X and Puig T 2014 Supercond. Sci. Technol. 27 044003 [8] Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J and Crabtree G W 2016 Rep. Prog. Phys. 79 116501 [9] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368 [10] Rijckaert H, Pollefeyt G, Sieger M, Hanisch J, Bennewitz J, De Keukeleere K, De Roo J, Huhne R, B acker M, Paturi P, Huhtinen H, Hemgesberg M and Van Driessche I 2017 Chem. Mater. 29 6104 [11] Díez-Sierra J, Lopez-Dom ínguez P, Rijckaert H, Rikel M, Hanisch J, Khan M Z, Falter M, Bennewitz J, Huhtinen H, Schafer S, M uller R, Schunk S A, Paturi P, Backer M, De Buysser K and Van Driessche I 2020 ACS Appl. Nano Mater. 3 5542 [12] Huang R T, Chen J, Liu Z Y, Wang G and Cai C B 2024 Adv. Funct. Mater. 34 2401251 [13] Huang R T, Chen J, Liu Z Y, Dou W Z, Zhang N and Cai C B 2023 Supercond. Sci. Technol. 36 125002 [14] Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications (Chichester: John Wiley & Sons) [15] Wee A T, Yin X M and Tang C S 2022 Introduction to Spectroscopic Ellipsometry of Thin Film Materials: Instrumentation, Data Analysis and Applications (Chichester: John Wiley & Sons) [16] Sun M X, He X, Chen M Y, Tang C S, Liu X F, Dai L, Liu J S, Zeng Z G, Sun S, Breese M B H, Cai C B, Wang L, Du Y G, Wee A T S and Yin X M 2024 ACS Photonics 11 2324 [17] Fan F, Lu Y M, Liu Z Y, Zhou D F, Guo Y Q, Bai C Y, Li M J and Cai C B 2020 Supercond. Sci. Technol. 33 055003 [18] Holesinger T G, Civale L, Maiorov B, Feldmann D M, Coulter J Y, Miller D J, Maroni V A, Chen Z, Larbalestier D C, Feenstra R, Li X, Huang Y, Kodenkandath T, Zhang W, Rupich M W and Malozemoff A P 2008 Adv. Mater. 20 391 [19] Qi X and Macmanus-Driscoll J L 2001 Curr. Opin. Solid State Mater. Sci. 5 291 [20] Kim B J, Chung S and Cho S M 2002 Applied Surface Science 187 124 [21] Wang Y, Zhao S C, Zeng Z G, Jia Z Y, Xiao S L, Wu K R and Cai C B 2023 J. Low Temp. Phys. 210 484 [22] Sun Z Y, Wang S S, Wu K, Liu Q and Han Z 2004 Physica C 412 1331 [23] Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B and Cai C B 2012 J. Appl. Phys. 112 053903 [24] Hong S, Cheong H and Park G 2010 Physica C 470 383 [25] Wang S S, Gu B F, Li F, Wu H, Muhammad S, Dahal Y P, Xiao Z S and Ouyang X P 2021 J. Alloys Compd. 863 158607 [26] Hebard A F, Fleming R M, Short K T, White A E, Rice C E, Levi A F J and Eick R H 1989 Appl. Phys. Lett. 55 1915 [27] Bozovic I 1990 Phys. Rev. B 42 1969 [28] Cooper S L, Reznik D, Kotz A, Karlow M A, Liu R, Klein M V, Lee W C, Giapintzakis J, Ginsberg D M, Veal B W and Paulikas A P 1993 Phys. Rev. B 47 8233 [29] Molina-Luna L, Duerrschnabel M, Turner S, Erbe M, Martinez G T, Van Aert S, Holzapfel B and Van Tendeloo G 2015 Supercond. Sci. Technol. 28 115009 [30] Garriga M, Humlícek J, Barth J, Johnson R L and Cardona M 1989 J. Opt. Soc. Am. B 6 470 [31] Arima T, Kikuchi K, Kasuya M, Koshihara S, Tokura Y, Ido T and Uchida S 1991 Phys. Rev. B 44 917 [32] Kelly M K, Barboux P, Tarascon J M and Aspnes D E 1989 Phys. Rev. B 40 6797 [33] Asmara T C, Wan D Y, Zhao Y L, Majidi M A, Nelson C T, Scott M C, Cai Y, Yan B X, Schmidt D, Yang M, Zhu T, Trevisanutto P E, Motapothula M R, Feng Y P, Breese M B H, Sherburne M, Asta M, Minor A, Venkatesan T and Rusydi A 2017 Nat. Commun. 8 15271 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|