Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087502    DOI: 10.1088/1674-1056/ad5275
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)

Jiale Chen(陈佳乐) and Jun Hu(胡军)†
Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  First-principles calculations were conducted to investigate the structural, electronic, and magnetic properties of single Fe atoms and Fe dimers on Cu$_{2}$N/Cu(100). Upon adsorption of an Fe atom onto Cu$_{2}$N/Cu(100), robust Fe-N bonds form, resulting in the incorporation of both single Fe atoms and Fe dimers within the surface Cu$_{2}$N layer. The partial occupancy of Fe-3d orbitals lead to large spin moments on the Fe atoms. Interestingly, both single Fe atoms and Fe dimers exhibit in-plane magnetic anisotropy, with the magnetic anisotropy energy (MAE) of an Fe dimer exceeding twice that of a single Fe atom. This magnetic anisotropy can be attributed to the predominant contribution of the component along the $x$ direction of the spin-orbital coupling Hamiltonian. Additionally, the formation of Fe-Cu dimers may further boost the magnetic anisotropy, as the energy levels of the Fe-3d orbitals are remarkably influenced by the presence of Cu atoms. Our study manifests the significance of uncovering the origin of magnetic anisotropy in engineering the magnetic properties of magnetic nanostructures.
Keywords:  magnetic nanostructures      magnetic anisotropy      spin-orbital coupling      ultrathin substrate  
Received:  22 March 2024      Revised:  30 May 2024      Accepted manuscript online: 
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.70.Tj (Spin-orbit effects)  
  75.75.-c (Magnetic properties of nanostructures)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Project supported by the Program for Science and Technology Innovation Team in Zhejiang Province, China (Grant No. 2021R01004), the Start-up Funding of Ningbo University, and Yongjiang Recruitment Project (Grant No. 432200942).
Corresponding Authors:  Jun Hu     E-mail:  hujun2@nbu.edu.cn

Cite this article: 

Jiale Chen(陈佳乐) and Jun Hu(胡军) First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100) 2024 Chin. Phys. B 33 087502

[1] Ahn E C 2020 npj 2D Mater. Appl. 4 17
[2] Zhang Y, Feng X, Zheng Z, Zhang Z, Lin K, Sun X, Wang G, Wang J, Wei J, Vallobra P, He K, Wang Z, Chen L, Zhang K, Xu Y and Zhao W 2023 Appl. Phys. Rev. 10 011301
[3] Chen B, Zeng M, Khoo K H, Das D, Fong X, Fukami S, Li S, Zhao W, Parkin S S P, Piramanayagam S N and Lim S T 2023 Mater. Today 70 193
[4] Chiesa A, Santini P, Garlatti E, Luis F and Carretta S 2024 Rep. Prog. Phys. 87 034501
[5] Qu J and Hu J 2018 Appl. Phys. Express 11 055201
[6] Coronado E 2020 Nat. Rev. Mater. 5 87
[7] Loth S, Baumann S, Lutz C P, Eigler D M and Heinrich A J 2012 Science 335 196
[8] Khajetoorians A A, Wiebe J, Chilian B, Lounis S, Blügel S and Wiesen-danger R 2012 Nat. Phys. 8 497
[9] Khajetoorians A A, Baxevanis B, Hübner C, Schlenk T, Krause S, Wehling T O, Lounis S, Lichtenstein A, Pfannkuche D, Wiebe J and Wiesendanger R 2013 Science 339 55
[10] Yang K, Phark S H, Bae Y, Esat T, Willke P, Ardavan A, Heinrich A J and Lutz C P 2021 Nat. Commun. 12 993
[11] Rau I G, Baumann S, Rusponi S, Donati F, Stepanow S, Gragnaniello L, Dreiser J, Piamonteze C, Nolting F, Gangopadhyay S, Albertini O R, Macfarlane R M, Lutz C P, Jones B A, Gambardella P, Heinrich A J and Brune H 2014 Science 344 988
[12] Baumann S, Donati F, Stepanow S, Rusponi S, Paul W, Gangopadhyay S, Rau I G, Pacchioni G E, Gragnaniello L, Pivetta M, Dreiser J, Piamonteze C, Lutz C P, Macfarlane R M, Jones B A, Gambardella P, Heinrich A J and Brune H 2015 Phys. Rev. Lett. 115 237202
[13] Donati F, Rusponi S, Stepanow S, Wäckerlin C, Singha A, Persichetti L, Baltic R, Diller K, Patthey F, Fernandes E, Dreiser J, Šljivančanin Ž, Kummer K, Nistor C, Gambardella P and Brune H 2016 Science 352 318
[14] Donati F and Heinrich A J 2021 Appl. Phys. Lett. 119 160503
[15] Feng W, Fu M, Yang P, Zhang Q, Hao Q, Yang X, Zhang Y, Zhu X, Tan S, Hu Z, Chen Q, Liu Q and Lai X 2023 Phys. Rev. B 108 245407
[16] Natterer F D, Yang K, Paul W, Willke P, Choi T, Greber T, Heinrich A J and Lutz C P 2017 Nature 543 226
[17] Pitters J, Croshaw J, Achal R, Livadaru L, Ng S, Lupoiu R, Chutora T, Huff T, Walus K and Wolkow R A 2024 ACS Nano 18 6766
[18] Ferrón A, Lado J L and Fernández-Rossier J 2015 Phys. Rev. B 92 174407
[19] Panda S K, Marco I D, Grånäs O, Eriksson O and Fransson J 2016 Phys. Rev. B 93 140101
[20] Nicklas J W, Wadehra A and Wilkins J W 2011 J. Appl. Phys. 110 123915
[21] Choi D J, Robles R, Gauyacq J P, Ternes M, Loth S and Lorente N 2016 Phys. Rev. B 94 085406
[22] Hu J, Wang P, Zhao J and Wu R 2018 Adv. Phys. X 3 1432415
[23] Liang X, Wu X, Hu J, Zhao J and Zeng X C 2018 Commun. Phys. 1 74
[24] Hu J and Wu R Q 2014 Nano Lett. 14 1853
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] G Kresse and Joubert D 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[30] Wang X D, Wu R Q, Wang D S and Freeman A J 1996 Phys. Rev. B 54 61
[31] Hu J and Wu R Q 2013 Phys. Rev. Lett. 110 097202
[32] Ruggiero C D, Choi T and Gupta J A 2007 Appl. Phys. Lett. 91 253106
[33] Brinker S, Santos Dias M and Lounis S 2020 Phys. Rev. Mater. 4 024404
[34] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[35] Wang D S, Wu R and Freeman A J 1993 Phys. Rev. B 47 14932
[36] Anderson P W 1950 Phys. Rev. 79 350
[37] Goodenough J B 1955 Phys. Rev. 100 564
[38] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[39] Choi D J, Lorente N, Wiebe J, von Bergmann K, Otte A F and Heinrich A J 2019 Rev. Mod. Phys. 91 041001
[1] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[2] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[3] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[4] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[5] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[6] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[7] Bending sensor based on flexible spin valve
L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov. Chin. Phys. B, 2023, 32(5): 057502.
[8] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[9] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[10] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[11] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[12] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[13] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[14] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[15] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
No Suggested Reading articles found!