Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068101    DOI: 10.1088/1674-1056/ad36ba
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide

Wan-Li Zhu(朱万里)1,2, Wei-Li Zhen(甄伟立)1,†, Rui Niu(牛瑞)1, Ke-Ke Jiao(焦珂珂)1, Zhi-Lai Yue(岳智来)1, Hui-Jie Hu(胡慧杰)1, Fei Xue(薛飞)3, and Chang-Jin Zhang(张昌锦)1,4,‡
1 Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China;
3 School of Physics, Hefei University of Technology, Hefei 230601, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr$_{2}$ by using combined measurements of the angle-resolved polarized Raman spectroscopy (ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr$_{2}$ flake. And anisotropic optical absorption spectrum of PdBr$_{2}$ nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr$_{2}$ nanowire exhibits high responsivity of 747A$\cdot$W$^{-1}$ and specific detectivity of 5.8$\times10^{12}$Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr$_{2}$, establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
Keywords:  linear dichroism reversal      polarization sensitivity      anisotropy      polarized photodetector  
Received:  18 December 2023      Revised:  28 February 2024      Accepted manuscript online:  22 March 2024
PACS:  81.05.Hd (Other semiconductors)  
  81.07.Gf (Nanowires)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201), the National Natural Science Foundation of China (Grant No. 12274414), and the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Contract No. JZHKYPT-2021-08).
Corresponding Authors:  Wei-Li Zhen, Chang-Jin Zhang     E-mail:  wlzhen@mail.ustc.edu.cn;zhangcj@hmfl.ac.cn

Cite this article: 

Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦) Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide 2024 Chin. Phys. B 33 068101

[1] Wang G, Wang R, Kong W and Zhang J 2018 Cogn. Neurodynamics 12 615
[2] Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald C, Mahaja V and Van Stryland E 2009 Handbook of Optics, 3rd IV: Optical Properties of Materials, Nonlinear Optics (McGraw-Hill)
[3] McCormick G C and Hendry A 1975 Radio Sci. 10 421
[4] Xin W, Zhong W, Shi Y, Shi Y, Jing J, Xu T, Guo J, Liu W, Li Y, Liang Z, Xin X, Cheng J, Hu W, Xu H and Liu Y 2024 Adv. Mater. 36 2306772
[5] Wang X, Zhong F, Kang J, Liu C, Lei M, Pan L, Wang H, Wang F, Zhou Z, Cui Y, Liu K, Wang J, Shen G, Shan C, Li J, Hu W and Wei Z 2021 Sci. China Mater. 64 1230
[6] Wolff L B 1997 Image and Vision Computing 15 81
[7] Sakamoto M, Ono Y, Noda K, Sasaki T, Kawatsuki N, Tanaka M and Ono H 2024 Opt. Commun. 552 130118
[8] Huang X, Wu C, Xu X, Wang B, Zhang S, Shen C, Yu C, Wang J, Chi N, Yu S and Chang-Hasnain C J 2023 Nat. Commun. 14 6855
[9] Wang B, Tang Z, Zheng H, Wang L, Wang Y, Wang R, Qiu Z and Zhu H 2023 Chin. Phys. B 32 098508
[10] Ran W, Ren Z, Wang P, Yan Y, Zhao K, Li L, Li Z, Wang L, Yang J, Wei Z, Lou Z and Shen G 2021 Nat. Commun. 12 6476
[11] Wu S, Chen Y, Wang X, Jiao H, Zhao Q, Huang X, Tai X, Zhou Y, Chen H, Wang X, Huang S, Yan H, Lin T, Shen H, Hu W, Meng X, Chu J and Wang J 2022 Nat. Commun. 13 3198
[12] Wan P, Jiang M, Su L, Xia S, Wei Y, Xu T, Liu Y, Shi D, Fang X and Kan C 2022 Adv. Funct. Mater. 32 2207688
[13] Wang F, Hu F, Dai M, Zhu S, Sun F, Duan R, Wang C, Han J, Deng W, Chen W, Ye M, Han S, Qiang B, Jin Y, Chua Y, Chi N, Yu S, Nam D, Chae S H, Liu Z and Wang Q J 2023 Nat. Commun. 14 1938
[14] Zhou Z, Cui Y, Tan P, Liu X and Wei Z 2019 J. Semicond. 40 061001
[15] Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P and Ni Z H 2022 Chin. Phys. Lett. 39 058501
[16] Han J, Wang F, Zhang Y, Deng W, Dai M, Hu F, Chen W, Cui J, Zhang C, Zhu S, Wang C, Ye M, Han S, Luo Y, Zhai T, Wang J and Wang Q J 2023 Adv. Mater. 35 2305594
[17] Li C, Wu Z, Zhang C, Peng S, Han J, He M, Dong X, Gou J, Wang J and Jiang Y 2023 Adv. Opt. Mater. 11 2300905
[18] Pi L, Wang P, Liang S J, Luo P, Wang H, Li D, Li Z, Chen P, Zhou X, Miao F and Zhai T 2022 Nat. Electron. 5 248
[19] Wang H, Li Y, Gao P, Wang J, Meng X, Hu Y, Yang J, Huang Z, Gao W, Zheng Z, Wei Z, Li J and Huo N 2024 Adv. Mater. 36 2309371
[1] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[2] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[3] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[4] First-principles study of electronic and magnetic properties of Fe atoms on Cu2N/Cu(100)
Jiale Chen(陈佳乐) and Jun Hu(胡军). Chin. Phys. B, 2024, 33(8): 087502.
[5] Anisotropic metal-insulator transition in strained VO2(B) single crystal
Zecheng Ma(马泽成), Shengnan Yan(闫胜楠), Zenglin Liu(刘增霖), Tao Xu(徐涛), Fanqiang Chen(陈繁强), Sicheng Chen(陈思成), Tianjun Cao(曹天俊), Litao Sun(孙立涛), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(6): 067103.
[6] Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2
Yonglai Liu(刘永来), Xitong Xu(许锡童), Miao He(何苗), Haitian Zhao(赵海天), Qingqi Zeng(曾庆祺), Xingyu Yang(杨星宇), Youming Zou(邹优鸣), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(5): 057402.
[7] Analytical solutions to the precession relaxation of magnetization with uniaxial anisotropy
Ze-Nan Zhang(张泽南), Zhen-Lin Jia(贾镇林), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2024, 33(4): 047502.
[8] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[9] Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海). Chin. Phys. B, 2024, 33(3): 037801.
[10] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[11] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[12] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[13] Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor
Yuan-Fang Yue(岳远放), Zhong-Bing Huang(黄忠兵), Huan Li(黎欢),Xing Ming(明 星), and Xiao-Jun Zheng(郑晓军). Chin. Phys. B, 2023, 32(9): 097403.
[14] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[15] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
No Suggested Reading articles found!