Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117103    DOI: 10.1088/1674-1056/adf82a
RAPID COMMUNICATION Prev   Next  

Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3

Jiayi Qiu(邱嘉毅)1,2, Jinling Yu(俞金玲)1,†, Zhu Diao(刁佇)2, Yunfeng Lai(赖云锋)1, Shuying Cheng(程树英)1, Yonghai Chen(陈涌海)3, and Ke He(何珂)4
1 Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
2 Department of Electronic Engineering and Maynooth International Engineering College, Maynooth, Co. Kildare, Ireland;
3 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
Abstract  The thickness dependence of linearly polarized light-induced momentum anisotropy and the inverse spin Hall effect (PISHE) in topological insulator (TI) Bi$_{2}$Te$_{3}$ films has been investigated. A significant enhancement of the PISHE signal is observed in the 12-quintuple-layer (QL) Bi$_{2}$Te$_{3}$ film compared with that of the 3- and 5-QL samples, whereas a minimal value of photoinduced momentum anisotropy is found in the 12-QL sample. The photoinduced momentum anisotropy and the PISHE in Bi$_{2}$Te$_{3}$ films are more than three and two orders of magnitude larger than those in Bi$_{2}$Se$_{3}$ films grown on SrTiO$_{3}$ substrates, respectively. The 3-QL sample exhibits a sinusoidal dependence of the PISHE current on the light spot position, while the 5-QL and 12-QL samples show a W-shaped dependence, which arises from the different angles between the coordinate axis $x$ and the in-plane crystallographic axis of the Bi$_{2}$Te$_{3}$ films. Our findings demonstrate the critical role of film thickness in modulating both the photoinduced momentum anisotropy and the PISHE current, thereby suggesting a thickness-engineering strategy for designing novel optoelectronic devices based on TIs.
Keywords:  photoinduced inverse spin Hall effect      photoinduced momentum anisotropy      three-dimensional topological insulator      Bi$_{2}$Te$_{3}$      thickness dependence  
Received:  02 June 2025      Revised:  18 July 2025      Accepted manuscript online:  06 August 2025
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Fe (Optical creation of spin polarized carriers)  
  75.70.Tj (Spin-orbit effects)  
  75.76.+j (Spin transport effects)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62074036, 61674038, and 11574302), the Foreign Cooperation Project of Fujian Province, China (Grant No. 2023I0005), the Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics (Grant No. KF202108), the National Key Research and Development Program of China (Grant No. 2016YFB0402303), and the Foundation of the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075).
Corresponding Authors:  Jinling Yu     E-mail:  jlyu@semi.ac.cn
About author:  2025-117103-250970.pdf

Cite this article: 

Jiayi Qiu(邱嘉毅), Jinling Yu(俞金玲), Zhu Diao(刁佇), Yunfeng Lai(赖云锋), Shuying Cheng(程树英), Yonghai Chen(陈涌海), and Ke He(何珂) Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3 2025 Chin. Phys. B 34 117103

[1] Xue H P, Sun R, Yang X, Liu J N, Yang Q L, Yang P T, Deng Z, Li X M, Bai X D, Zhang X Q, He W and Cheng Z H 2015 Phys. Rev. B 111 075104
[2] Mukhopadhyay S, Pal P K, Manna S, Mitra C and Barman A 2015 Phys. Rev. Appl. 23 014038
[3] Sun R, Sun Y B, Li N, Xue H P, Li Y, Yang X, Li Y, Comstock A H, Sun D L, Zhang X Q and Cheng Z H 2014 Phys. Rev. B 110 024408
[4] Li J, Yin Z C, Li Q X and Zhu J J 2015 Chin. Phys. B 34 037501
[5] Kumar N, Hait S, Pandey L, Sharma N, Gupta N K and Chaudhary S 2014 Phys. Rev. B 110 134411
[6] Bader S D and Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71
[7] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[8] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601
[9] Morota M, Niimi Y, Ohnishi K,Wei D H, Tanaka T, Kontani H, Kimura T and Otani Y 2011 Phys. Rev. B 83 174405
[10] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
[11] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301
[12] Yu J, Zeng X, Zhang L, He K, Cheng S, Lai Y, Huang W, Chen Y, Yin C and Xue Q 2017 Nano Lett. 17 7878
[13] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[14] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401
[15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[16] Wu W, Yu J, Jiang Y, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K and Xue Q 2022 Appl. Phys. Lett. 120 062407
[17] Wu W, Yu J, Xia L, Zhu K, Zeng X, Chen Y, Yin C, Cheng S, Lai Y and He K 2022 Opt. Express 30 15085
[18] Yu J, Zhu K, Zeng X, Chen L, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, Huang J, He K and Xue Q 2019 Phys. Rev. B 100 235108
[19] Peng X Y, Zhang Q, Shen B, Shi J R, Yin C M, He X W, Xu F J, Wang X Q, Tang N, Jiang C Y, Chen Y H and Chang K 2011 Phys. Rev. B 84 075341
[20] Yu J, Zeng X, Zhang L, Yin C, Chen Y, Liu Y, Cheng S, Lai Y, He K and Xue Q 2018 Opt. Express 26 4832
[21] Olbrich P, Golub L E, Herrmann T, et al. 2014 Phys. Rev. Lett. 113 096601
[22] McIver JW, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2011 Nat. Nanotechnol. 7 96
[23] Yu J, Xia L, Zhu K, Pan Q, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K and Xue Q 2020 ACS Appl. Mater. Interfaces 12 18091
[24] Ganeev R A, Popov V S, Zvyagin A I, Lavrentyev N A, Mirofyanchenko A E, Mirofyanchenko E V, Shuklov I A, Ovchinnikov O V, Ponomarenko V P and Razumov V F 2021 Nanophotonics 10 3857
[25] Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C and Xue Q K 2010 Adv. Mater. 22 4002
[26] Bahramy M S, King P D C, Torre A D L, Chang J, Shi M, Patthey L, Balakrishnan G, Hofmann P, Arita R, Nagaosa N and Baumberger F 2012 Nat. Commun. 3 1159
[27] Wang M C, Qiao S, Jiang Z, Luo S N and Qi J 2016 Phys. Rev. Lett. 116 036601
[1] Ultrafast electron transport in 2D van der Waals heterostructures Bi2Te3/Fe4GeTe2 probed by terahertz spectroscopy
Hui-Xiang Hong(洪晖祥), Yun Sun(孙芸), Jing Li(李竞), Jing-Yi Peng(彭静宜), Hui-Ping Zhang(张慧萍), Hong-Guang Li(李宏光), Shao-Hui Wu(吴少晖), Tian-Xiao Nie(聂天晓), Yan Peng(彭滟), and Zuan-Ming Jin(金钻明). Chin. Phys. B, 2025, 34(7): 077304.
[2] Thickness dependence of surface morphology and charge carrier mobility in organic field-effect transistors
Tian Xue-Yan(田雪雁), Xu Zheng(徐征), Zhao Su-Ling(赵谡玲), Zhang Fu-Jun(张福俊), Yuan Guang-Cai(袁广才),Li Jing(李婧), Sun Qin-Jun(孙钦军),Wang Yun(王赟), and Xu Xu-Rong(徐叙瑢). Chin. Phys. B, 2010, 19(1): 018103.
[3] Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Tian Xiao-Qing(田晓庆), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2008, 17(1): 286-289.
No Suggested Reading articles found!