|
|
|
Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3 |
| Jiayi Qiu(邱嘉毅)1,2, Jinling Yu(俞金玲)1,†, Zhu Diao(刁佇)2, Yunfeng Lai(赖云锋)1, Shuying Cheng(程树英)1, Yonghai Chen(陈涌海)3, and Ke He(何珂)4 |
1 Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; 2 Department of Electronic Engineering and Maynooth International Engineering College, Maynooth, Co. Kildare, Ireland; 3 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 4 Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China |
|
|
|
|
Abstract The thickness dependence of linearly polarized light-induced momentum anisotropy and the inverse spin Hall effect (PISHE) in topological insulator (TI) Bi$_{2}$Te$_{3}$ films has been investigated. A significant enhancement of the PISHE signal is observed in the 12-quintuple-layer (QL) Bi$_{2}$Te$_{3}$ film compared with that of the 3- and 5-QL samples, whereas a minimal value of photoinduced momentum anisotropy is found in the 12-QL sample. The photoinduced momentum anisotropy and the PISHE in Bi$_{2}$Te$_{3}$ films are more than three and two orders of magnitude larger than those in Bi$_{2}$Se$_{3}$ films grown on SrTiO$_{3}$ substrates, respectively. The 3-QL sample exhibits a sinusoidal dependence of the PISHE current on the light spot position, while the 5-QL and 12-QL samples show a W-shaped dependence, which arises from the different angles between the coordinate axis $x$ and the in-plane crystallographic axis of the Bi$_{2}$Te$_{3}$ films. Our findings demonstrate the critical role of film thickness in modulating both the photoinduced momentum anisotropy and the PISHE current, thereby suggesting a thickness-engineering strategy for designing novel optoelectronic devices based on TIs.
|
Received: 02 June 2025
Revised: 18 July 2025
Accepted manuscript online: 06 August 2025
|
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
| |
72.25.Fe
|
(Optical creation of spin polarized carriers)
|
| |
75.70.Tj
|
(Spin-orbit effects)
|
| |
75.76.+j
|
(Spin transport effects)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62074036, 61674038, and 11574302), the Foreign Cooperation Project of Fujian Province, China (Grant No. 2023I0005), the Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics (Grant No. KF202108), the National Key Research and Development Program of China (Grant No. 2016YFB0402303), and the Foundation of the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075). |
Corresponding Authors:
Jinling Yu
E-mail: jlyu@semi.ac.cn
|
| About author: 2025-117103-250970.pdf |
Cite this article:
Jiayi Qiu(邱嘉毅), Jinling Yu(俞金玲), Zhu Diao(刁佇), Yunfeng Lai(赖云锋), Shuying Cheng(程树英), Yonghai Chen(陈涌海), and Ke He(何珂) Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3 2025 Chin. Phys. B 34 117103
|
[1] Xue H P, Sun R, Yang X, Liu J N, Yang Q L, Yang P T, Deng Z, Li X M, Bai X D, Zhang X Q, He W and Cheng Z H 2015 Phys. Rev. B 111 075104 [2] Mukhopadhyay S, Pal P K, Manna S, Mitra C and Barman A 2015 Phys. Rev. Appl. 23 014038 [3] Sun R, Sun Y B, Li N, Xue H P, Li Y, Yang X, Li Y, Comstock A H, Sun D L, Zhang X Q and Cheng Z H 2014 Phys. Rev. B 110 024408 [4] Li J, Yin Z C, Li Q X and Zhu J J 2015 Chin. Phys. B 34 037501 [5] Kumar N, Hait S, Pandey L, Sharma N, Gupta N K and Chaudhary S 2014 Phys. Rev. B 110 134411 [6] Bader S D and Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71 [7] Hirsch J E 1999 Phys. Rev. Lett. 83 1834 [8] Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601 [9] Morota M, Niimi Y, Ohnishi K,Wei D H, Tanaka T, Kontani H, Kimura T and Otani Y 2011 Phys. Rev. B 83 174405 [10] Hoffmann A 2013 IEEE Trans. Magn. 49 5172 [11] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 [12] Yu J, Zeng X, Zhang L, He K, Cheng S, Lai Y, Huang W, Chen Y, Yin C and Xue Q 2017 Nano Lett. 17 7878 [13] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [14] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401 [15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [16] Wu W, Yu J, Jiang Y, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K and Xue Q 2022 Appl. Phys. Lett. 120 062407 [17] Wu W, Yu J, Xia L, Zhu K, Zeng X, Chen Y, Yin C, Cheng S, Lai Y and He K 2022 Opt. Express 30 15085 [18] Yu J, Zhu K, Zeng X, Chen L, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, Huang J, He K and Xue Q 2019 Phys. Rev. B 100 235108 [19] Peng X Y, Zhang Q, Shen B, Shi J R, Yin C M, He X W, Xu F J, Wang X Q, Tang N, Jiang C Y, Chen Y H and Chang K 2011 Phys. Rev. B 84 075341 [20] Yu J, Zeng X, Zhang L, Yin C, Chen Y, Liu Y, Cheng S, Lai Y, He K and Xue Q 2018 Opt. Express 26 4832 [21] Olbrich P, Golub L E, Herrmann T, et al. 2014 Phys. Rev. Lett. 113 096601 [22] McIver JW, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2011 Nat. Nanotechnol. 7 96 [23] Yu J, Xia L, Zhu K, Pan Q, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K and Xue Q 2020 ACS Appl. Mater. Interfaces 12 18091 [24] Ganeev R A, Popov V S, Zvyagin A I, Lavrentyev N A, Mirofyanchenko A E, Mirofyanchenko E V, Shuklov I A, Ovchinnikov O V, Ponomarenko V P and Razumov V F 2021 Nanophotonics 10 3857 [25] Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C and Xue Q K 2010 Adv. Mater. 22 4002 [26] Bahramy M S, King P D C, Torre A D L, Chang J, Shi M, Patthey L, Balakrishnan G, Hofmann P, Arita R, Nagaosa N and Baumberger F 2012 Nat. Commun. 3 1159 [27] Wang M C, Qiao S, Jiang Z, Luo S N and Qi J 2016 Phys. Rev. Lett. 116 036601 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|