CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations |
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明)†, Ru Bai(白茹)‡, and Tiejun Zhou(周铁军) |
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract The electronic structure, elasticity, and magnetic properties of the Mn$_{2}X$In ($X={\rm Fe}$, Co) full-Heusler compounds are comprehensively investigated via first-principles calculations. The calculated elastic constants indicate that both Mn$_{2}$FeIn and Mn$_{2}$CoIn possess ductility. At the optimal lattice constants, the magnetic moments are found to be 1.40 $\mu_{\rm B}$/f.u. for Mn$_{2}$FeIn and 1.69 $\mu_{\rm B}$/f.u. for Mn$_{2}$CoIn. Under the biaxial strain ranging from $-2$% to 5%, Mn$_{2}$FeIn demonstrates a remarkable variation in the spin polarization, spanning from $-2$% to 74%, positioning it as a promising candidate for applications in spintronic devices. Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface. Additionally, under biaxial strain, the magnetic anisotropy of Mn$_{2}$FeIn undergoes a transition of easy-axis direction. Utilizing second-order perturbation theory and electronic structure analysis, the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface.
|
Received: 27 June 2024
Revised: 16 October 2024
Accepted manuscript online: 05 November 2024
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
75.47.Np
|
(Metals and alloys)
|
|
Fund: Project supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No. GK229909299001-05) and Zhejiang Provincial Public Welfare Projects of China (Grant No. LGG22F030017). |
Corresponding Authors:
Shiming Yan, Ru Bai
E-mail: shimingyan@hdu.edu.cn;bairu@hdu.edu.cn
|
Cite this article:
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明), Ru Bai(白茹), and Tiejun Zhou(周铁军) Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations 2025 Chin. Phys. B 34 017501
|
[1] Belkharroubi F, Bourdim M, Maizia A, Belmiloud N, Khelfaoui F, Smahi Z, Boudia K, Benchehima M, Azzi S and Ameri M 2023 Philos. Mag. 103 1090 [2] Belkharroubi F, Khelfaoui F, Amara K, Marbouh N, Ameri M and Abderrahmane Y S 2019 Phys. Rev. B 557 56 [3] Wei X P, Cao T Y, Sun X W, Gao Q, Gao P F, Gao Z L and Tao X M 2020 Chin. Phys. B 29 077105 [4] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1 [5] Zoubir M K, Fadila B, Keltoum B, Ibrahim A and Mohammed A 2021 Mater. Test 63 537 [6] Azar S M, Hamad B A and Khalifeh J M 2012 J. Magn. Magn. Mater. 324 1776 [7] Sarkar S and Bansal C 2004 J. Alloys Compd. 366 107 [8] Sugihara A, Mizukami S, Yamada Y, Koike K and Miyazaki T 2014 Appl. Phys. Lett. 104 132404 [9] Vinesh A, Bhargava H, Lakshmi N and Venugopalan K 2009 J. Appl. Phys. 105 7307 [10] Ishida S, Kawakami S and Asano S 2004 Mater. Trans. 45 1065 [11] Ishida S, Masaki T, Fujii S and Asano S 1998 Physica B 245 1 [12] Kellou A, Fenineche N, Grosdidier T, Aourag H and Coddet C 2003 J. Appl. Phys. 94 3292 [13] Luo H Z, Zhang HW, Zhu Z Y, Ma L, Xu S F,Wu G H, Zhu X X, Jiang C B and Xu H B 2008 J. Appl. Phys. 103 225 [14] Groot R a D, Mueller F M, Engen P G V and Buschow K H J 1983 Phys. Rev. Lett. 50 25 [15] Picozzi S, Continenza A and Freeman A J 2002 Phys. Rev. B 66 94421 [16] Yoshio, Miura, Kazutaka, Nagao, Masafumi and Shirai 2004 Phys. Rev. B 69 144413 [17] Amrich O, Monir M E A, Baltach H, Omran S B, Sun X W, Wang X, Al-Douri Y, Bouhemadou A and Khenata R 2018 Journal of Superconductivity and Novel Magnetism 31 241 [18] Babalola M and Iyorzor B 2019 J. Magn. Magn. Mater. 491 165560 [19] Chen Y, Wu B, Yuan H, Feng Y and Chen H 2015 J. Solid State Chem. 221 311 [20] Patel P D, Pillai S B, Shinde S M, Gupta S D and Jha P K 2018 Physica B 550 376 [21] Hamaya K, Itoh H, Nakatsuka O, Ueda K, Yamamoto K, Itakura M, Taniyama T, Ono T and Miyao M 2009 Phys. Rev. Lett. 102 137204 [22] Chibueze T C, Ekuma C E, Raji A T, Ezema F I and Okoye C M I 2020 J. Alloys Compd. 848 156186 [23] Zhang Z W and Xu Y L 2013 Superlattices Microstruct. 57 19 [24] WangWD, Yang C G, Bai LW, LiML and LiWB 2018 J. Nanomater 8 74 [25] Appel O, Breuer G, Cohen S, Beeri O and Zalkind S 2019 Mater. Sci. 12 1509 [26] Bach P, Bader A S, Ruster C, Gould C and Heinrich B 2003 Appl. Phys. Lett. 83 521 [27] Baral M, Chattopadhyay M K, Jangir R, Chakrabarti A and Ganguli T 2019 J. Magn. Magn. Mater. 475 675 [28] Benatmane S and Cherid S 2020 JETP Lett. 111 694 [29] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkin S S P 2017 Phys. Rev. B 95 045140 [30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [31] Aravindan V, Rajarajan A K and MahendranM2021 J. Electron. Mater. 50 1786 [32] Li Y, Xu P, Zhang X M, Liu G D, Liu E K and Li LW2020 Chin. Phys. B 29 087101 [33] Calandra M, Mazin I I and Mauri F 2009 Phys. Rev. B 80 308 [34] Liu Y, Wang G, Huang Q S, Guo L W and Chen X L 2013 Phys. Rev. Lett. 110 029603 [35] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [36] Wang J H, Zhang T T, Zhang QW, Xia C,WangWH, Qian S F, Cheng Z X, Zhang G and Wang X T 2024 Adv. Funct. Mater. 34 2316079 [37] Li G J, Liu E K, Liu G D,WangWH andWu G 2021 Chin. Phys. B 30 083103 [38] Wang X T, Zhao W Q, Cheng Z X, Dai X F and Khenata R 2018 Solid State Commun. 269 125 [39] Xie H H, Gao Q, Li L, Lei G, Mao G Y, Hu X R and Deng J B 2015 Comput. Mater. Sci. 103 52 [40] Yalcin B G and Bagci S 2015 J. Phys. D: Appl. Phys. 48 475304 [41] Priyambada A and Parida P 2024 J. Phys. Chem. Solids 188 111892 [42] Priyambada A, Deep R and Parida P 2024 Comput. Condens. Matter 39 e00893 [43] Gong J L, Wang Y, Han Y L, Cheng Z X, Wang X T, Yu Z M and Yao Y G 2024 Adv. Mater. 36 e2402232 [44] Liu J R,Wei X P, ChangWL and Tao X M 2022 J. Phys. Chem. Solids 163 110600 [45] Khandy S A and Chai J D 2020 J. Appl. Phys. 127 165102 [46] Wang V, Xu N, Liu J C, Tang G and Geng W T 2019 Comput. Phys. Commun. 267 108033 [47] Reuss A 1929 Appl. Math. Mech. 9 49 [48] Musari A A, Sunmonu R S and Babajide S O 2024 Comput. Condens. Matter 39 e00890 [49] Puthusseri N N and Natesan B 2024 Comput. Condens. Matter 39 e00894 [50] Grewal S, Surehli M K, Nag S and Kumar R 2024 Comput. Condens. Matter 39 e00910 [51] Galanakis I, Ph. D and Papanikolaou N 2002 Phys. Rev. B 66 174429 [52] Epishin A I and Lisovenko D S 2016 Tech. Phys. 61 1516 [53] Gercek H 2007 Int. J. Rock Mech. Min. Sci. 44 1 [54] Güler E, Güler M, Uǧur and Uǧur G 2021 Int. J. Quantum Chem. 121 e26606 [55] Pettifor D 1992 Mater. Sci. Technol. 8 345 [56] Friák M, Ob M and Vitek V 2003 Philos. Mag. 83 3529 [57] Hao L, Khenata R, Wang X and Yang T 2019 J. Electron. 48 6222 [58] Li X, Chen X, Meng C and Ji G 2006 Solid State Commun. 139 197 [59] Al-Qaisi S, Abu-JafarMS, Gopir G K, Ahmed R, Bin Omran S, Jaradat R, Dahliah D and Khenata R 2017 Results Phys. 7 709 [60] Pauling and Linus 1938 Phys. Rev. B 54 899 [61] Slater J C 1937 J. Appl. Phys. 8 385 [62] Ahmad A, Srivastava S K and Das A K 2021 J. Alloys Compd. 878 160341 [63] Aravindan V, Rajarajan A K, Vijayanarayanan V and Mahendran M 2022 Funct. Mater. Lett. 15 2251011 [64] Benatmane S and Bouhafs B 2019 Comput. Condens. Matter 19 e00371 [65] Katubi K M, Shakil M, Pervaiz H, Gillani S, Gadhi M A, Ahmad S and Al-Buriahi M S 2023 Indian J. Phys. 97 2669 [66] Rached H 2021 Int. J. Quantum Chem. 121 e26647 [67] Inomata K, Ikeda N, Tezuka N, Goto R, Sugimoto S, Wojcik M and Jedryka E 2008 Sci. Technol. Adv. Mater. 9 014101 [68] Chen J R, Gong Y T, Lu X Y, Zhang C Y, Hu Y, Wang M Z, Shi Z, Fu S, Cai H L, Liu R B, Yuan Y, Lu Y, Liu T Y, You B, Xu Y B and Du J 2023 Chin. Phys. Lett. 40 047501 [69] Hao R R, Zhang K, Li Y G, Cao Q, Zhang X Y, Zhu D P and Zhao W S 2022 Chin. Phys. B 31 017502 [70] Forstreuter J, Steinbeck L, Richter M and Eschrig H 1997 Phys. Rev. B 55 9415 [71] Odkhuu D 2016 Phys. Rev. B 94 060403 [72] Wang X T, Li X P, Li J H, Xie C W, Wang J H, Yuan H K, Wang W H, Cheng Z X, Yu Z M and Zhang G 2023 Adv. Funct. Mater. 33 2304499 [73] Gong J L, Ding G Q, Xie C W, Wang W H, Liu Y, Zhang G and Wang X T 2024 Adv. Sci. 11 e2307297 [74] Chen J L and Hu J 2024 Chin. Phys. B 33 087502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|