|
|
|
Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co–Ni multilayer/Ta]n superlattices |
| Xiaomiao Yin(阴小苗)1,2,3, Zhengxiao Li(李政霄)2,4, Jun Kang(康俊)1,3,†, Changmin Xiong(熊昌民)3,5,‡, and Lijun Zhu(朱礼军)2,4,§ |
1 Beijing Computational Science Research Center, Beijing 100193, China; 2 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3 Department of Physics, Beijing Normal University, Beijing 100875, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract We report the development of the [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayer/Ta]$_{n}$ superlattice with strong spin-orbit torque, large perpendicular magnetic anisotropy, and remarkably low switching current density. We demonstrate that the efficiency of the spin-orbit torque increases nearly linearly with the repetition number $n$, which is in excellent agreement with the spin Hall effect of the Pt$_{0.75}$Ti$_{0.25}$ being essentially the only source of the observed spin-orbit torque. The perpendicular magnetic anisotropy field is also substantially enhanced by more than a factor of 2 as $n$ increases from 1 to 6. The [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayers/Ta]$_{n}$ superlattice additionally exhibits deterministic, low-current-density magnetization switching despite the very large total layer thicknesses. The unique combination of strong spin-orbit torque, robust perpendicular magnetic anisotropy, low-current-density switching, and excellent high thermal stability makes the [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayer/Ta]$_{n}$ superlattice a highly compelling material candidate for ultrafast, energy-efficient, and long-data-retention spintronic technologies.
|
Received: 17 September 2025
Revised: 21 October 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
| |
72.25.Mk
|
(Spin transport through interfaces)
|
| |
68.65.Cd
|
(Superlattices)
|
| |
96.12.Hg
|
(Magnetic field and magnetism)
|
|
| Fund: This project was supported by the Beijing Natural Science Foundation (Grant No. Z230006), the National Key Research and Development Program of China (Grant No. 2022YFA1204000), and the National Natural Science Foundation of China (Grant Nos. 12274405 and 12393831). |
Corresponding Authors:
Jun Kang, Changmin Xiong, Lijun Zhu
E-mail: jkang@csrc.ac.cn;cmxiong@bnu.edu.cn;ljzhu@semi.ac.cn
|
Cite this article:
Xiaomiao Yin(阴小苗), Zhengxiao Li(李政霄), Jun Kang(康俊), Changmin Xiong(熊昌民), and Lijun Zhu(朱礼军) Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co–Ni multilayer/Ta]n superlattices 2026 Chin. Phys. B 35 018502
|
[1] Zhu L J 2023 Adv. Mater. 35 2300853 [2] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [3] Miron I M, Garello K, Gaudin G, Zermatten P J, CostacheMV, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature (London) 476 189 [4] Luo Z C, Hrabec A, Dao T P, Sala G, Finizio S, Feng J X, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature 579 214 [5] Zhang Y, Xu H J, Jia K, et al. 2023 Sci. Adv. 9 adg9819 [6] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447 [7] Liu L, Zhou C H, Zhao T Y, et al. 2022 Nat. Commun. 13 3539 [8] Liang S X, Chen A T, Han L, Bai H, Chen C, Huang L, Ma M Y, Pan F, Zhang X X and Song C 2024 Adv. Funct. Mater. 35 2417731 [9] Fan Y B, Wang Q, Wang W, Wang D, Huang Q K, Wang Z X, Han X, Chen Y X, Bai L H, Yan S S and Tian Y F 2024 ACS Nano 18 26350 [10] Li R F, Zhang S, Luo S J, Guo Z, Xu Y, Ouyang J, Song M, Zou Q M, Xi L, Yang X F, Hong J M and You L 2021 Nat. Electron. 4 179 [11] Lee O J, Liu L Q, Pai C F, Li Y, Tseng H W, Gowtham P G, Park J P, Ralph D C and Buhrman R A 2014 Phys. Rev. B 89 024418 [12] Zhu L J, Ralph D C and Buhrman R A 2021 Phys. Rev. Appl. 15 024059 [13] Zhu L J, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev. 8 031308 [14] Zhu L J, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 10 031001 [15] Zhu L J, Zhu L, Sui M L, Ralph D C and Buhrman R A 2019 Sci. Adv. 5 eaav8025 [16] Zhu L J, Sobotkiewich K, Ma X, Li X Q, Ralph D C and Buhrman R A 2019 Adv. Funct. Mater. 29 1805822 [17] Hu C Y and Pai C F 2020 Adv. Quantum Technol. 3 2000024 [18] Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y and Zhu L J 2022 Phys. Rev. Appl. 18 054079 [19] Quan J Z, Zhao X T, LiuW, Liu L, Song Y H, Li Y, Ma J, Li S Q, Zhao X G and Zhang Z D 2020 Appl. Phys. Lett. 117 222405 [20] Zhu L J, Zhu L J, Shi S J, Sui M L, Ralph D C and Buhrman R A 2019 Phys. Rev. Appl. 11 061004 [21] Zhu L J and Buhrman R A 2019 Phys. Rev. Appl. 12 051002 [22] Zhu L J, Li JW, Zhu L J and Xie X Y 2022 Phys. Rev. Appl. 18 064052 [23] Lin X, Zhu L J, Liu Q B and Zhu L J 2023 Nano Lett. 23 9420 [24] Zhu L J and Ralph D C 2023 Nat. Commun. 14 1778 [25] Seki T, Shimada J, Iihama S, Tsujikawa M, Koganezawa T, Shioda A, Tashiro T, Zhou W, Mizukami S, Shirai M and Takanashi K 2017 J. Phys. Soc. Jpn. 86 074710 [26] Fukami S, Sato H, Yamanouchi M, Ikeda S and Ohno H 2013 Appl. Phys. Express 6 073010 [27] Daalderop G H O, Kelly P J and den Broeder F J A 1992 Phys. Rev. Lett. 68 682 [28] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411 [29] Mohanta M, Parida S K, Sahoo A, Hussain Z, Gupta M, Reddy V R and Medicherla V R R 2019 Phys. B Condens. Matter 572 105 [30] Girod S, Gottwald M, Andrieu S, Mangin S, McCord J, Fullerton E E, Beaujour J M L, Krishnatreya B J and Kent A D 2009 Appl. Phys. Lett. 94 262504 [31] Beaujour J M L, Chen W, Krycka K, Kao C C, Sun J Z and Kent A D 2007 Eur. Phys. J. B 59 475 [32] Mangin S, Ravelosona D, Katine J A, CareyMJ, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210 [33] Bedau D, Liu H, Bouzaglou J J, Kent A D, Sun J Z, Katine J A, Fullerton E E and Mangin S 2010 Appl. Phys. Lett. 96 022514 [34] Koyama T, Yamada G, Tanigawa H, Kasai S, Ohshima N, Fukami S, Ishiwata N, Nakatani Y and Ono T 2008 Appl. Phys. Exp. 1 101303 [35] Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K and Ono T 2011 Nat. Mater. 10 194 [36] Moriyama T, Gudmundsen T J, Huang P Y, Liu L, Muller D A, Ralph D C and Buhrman R A 2010 Appl. Phys. Lett. 97 072513 [37] Bansal R, Behera N, Kumar A and Mudulia P K 2017 Appl. Phys. Lett. 110 202402 [38] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425 [39] Liu Q B, Zhu L J, Zhang X S, Muller D A and Ralph D C 2022 Appl. Phys. Rev. 9 021402 [40] Yan Z H, Li Z X, Zhu L J, Lin X and Zhu L J 2025 Chin. Phys. Lett. 42 090701 [41] Seki T, Sakuraba Y, Masuda K, Miura A, Tsujikawa M, Uchida K, Kubota T, Miura Y, Shirai M and Takanashi K 2021 Phys. Rev. B 103 L020402 [42] Uchida K I, Kikkawa T, Seki T, Oyake T, Shiomi J, Qiu Z, Takanashi K and Saitoh E 2015 Phys. Rev. B 92 094414 [43] Nguyen M H, Ralph D C and Buhrman R A 2016 Phys. Rev. Lett. 116 126601 [44] Liu Q B, Lin X, Shaked A, Nie Z Y, Yu G Q and Zhu L J 2024 Adv. Mater. 36 2406552 [45] Chen T Y, Ou Y X, Tsai T Y, Buhrman R A and Pai C F 2018 APL Mater. 6 121101 [46] Liu Q B and Zhu L J 2025 Nat. Commun. 16 8660 [47] Zhu L J, Liu Q B and Wang X R 2025 Natl. Sci. Rev. 12 nwaf240 [48] Liu Q B, Zhu L J and Zhu L J under review [49] Zhu L J and Buhrman R A 2021 Phys. Rev. Appl. 15 L031001 [50] Zhang T Y, Zhu L J, Yan Z H and Zhu L J 2025 arXiv:2512.07102 [51] Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 122 077201 [52] Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. B 99 180404 [53] Han G L, Lin X, Liu Q B, Gong G W and Zhu L J 2025 Adv. Funct. Mater. 36 e23908 [54] Yin X M, Han G L, Gong G W, Kang J, Xiong C M and Zhu L J 2025 Chin. Phys. Lett. 42 110703 [55] Zhu L J, Sobotkiewich K, Ma X, Li X Q, Ralph D C and Buhrman R A 2019 Adv. Funct. Mater. 29 1805822 [56] Zhu L J, Zhu L J, Ma X, Li X Q and Buhrman R A 2022 Commun. Phys. 5 151 [57] Liu Q B, Liu L, Xing G Z and Zhu L J 2024 Nat. Commun. 15 2978 [58] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309 [59] Zhao Z Y, Jamali M, Smith A K and Wang J P 2015 Appl. Phys. Lett. 106 132404 [60] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2018 Sci. Adv. 4 eaat9989 [61] Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z S, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J and Chen J S 2019 Nat. Nanotechnol. 14 939 [62] Huang Q K, Dong Y N, Zhao X N,Wang J, Chen Y X, Bai L H, Dai Y, Dai Y Y, Yan S S and Tian Y F 2020 Adv. Electron. Mater. 6 1900782 [63] Kajale S N, Nguyen T, Hung N T, Li M and Sarkar D 2024 Sci. Adv. 10 eadk8669 [64] Zhang Y Y, Ren X L, Liu R Z, Chen Z H, Wu X Z, Pang J, Wang W, Lan G B, Watanabe K, Taniguchi T, Shi Y G, Yu G Q and Shao Q M 2024 Adv. Mater. 36 2406464 [65] Guang Y, Zhang L K, Zhang J W, et al. 2023 Adv. Electron. Mater. 9 2200570 [66] Watanabe K, Jinnai B, Fukami S, Sato H and Ohno H 2018 Nat. Commun. 9 663 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|