Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057402    DOI: 10.1088/1674-1056/ad334b
RAPID COMMUNICATION Prev   Next  

Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2

Yonglai Liu(刘永来)1,2, Xitong Xu(许锡童)1,†, Miao He(何苗)1,2, Haitian Zhao(赵海天)1,2, Qingqi Zeng(曾庆祺)1, Xingyu Yang(杨星宇)1,2, Youming Zou(邹优鸣)1, Haifeng Du(杜海峰)1,2, and Zhe Qu(屈哲)1,2,‡
1 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL), HFIPS, CAS, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  Due to the lack of inversion, mirror or other roto-inversion symmetries, chiral crystals possess a well-defined handedness which, when combined with time-reversal symmetry breaking from the application of magnetic fields, can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy. In this study, we investigate the nonreciprocal magneto-transport in microdevices of NbGe$_{2}$, a superconductor with structural chirality. A giant nonreciprocal signal from vortex motions is observed during the superconducting transition, with the ratio of nonreciprocal resistance to the normal resistance ${\gamma}$ reaching 6$\times10^{5}$~T$^{-1}$$\cdot$A$^{-1}$. Interestingly, the intensity can be adjusted and even sign-reversed by varying the current, the temperature, and the crystalline orientation. Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.
Keywords:  chiral crystals      magnetochiral anisotropy      superconducting vortex      nonreciprocal transport  
Received:  31 January 2024      Revised:  08 March 2024      Accepted manuscript online:  13 March 2024
PACS:  74.25.F- (Transport properties)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Key R & D Program of China (Grant No. 2022YFA1403603), the National Natural Science Foundation of China (Grant Nos. U2032213, 12104461, 12374129, and 12304156), and Chinese Academy of Sciences (Grant Nos. YSBR-084, and JZHKYPT-2021-08).
Corresponding Authors:  Xitong Xu, Zhe Qu     E-mail:  xuxitong@hmfl.ac.cn;zhequ@hmfl.ac.cn

Cite this article: 

Yonglai Liu(刘永来), Xitong Xu(许锡童), Miao He(何苗), Haitian Zhao(赵海天), Qingqi Zeng(曾庆祺), Xingyu Yang(杨星宇), Youming Zou(邹优鸣), Haifeng Du(杜海峰), and Zhe Qu(屈哲) Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2 2024 Chin. Phys. B 33 057402

[1] Wagnière G H 2007 On chirality and the universal asymmetry: reflections on image and mirror image (John Wiley & Sons)
[2] Chang G, Wieder B J, Schindler F, Sanchez D S, Belopolski I, Huang S M, Singh B, Wu D, Chang T R, Neupert T, Xu S Y, Lin H and Hasan M Z 2018 Nat. Mater. 17 978
[3] Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401
[4] Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740
[5] Atzori M, Train C, Hillard E A, Avarvari N and Rikken G L J A 2021 Chirality 33 844
[6] Cheong S W and Xu X 2022 npj Quantum Mater. 7 40
[7] Yu T, Luo Z and Bauer G E 2023 Phys. Rep. 1009 1
[8] Hoshino S, Wakatsuki R, Hamamoto K and Nagaosa N 2018 Phys. Rev. B 98 054510
[9] Fasman G D 2013 Circular dichroism and the conformational analysis of biomolecules (Springer Science & Business Media)
[10] Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255
[11] Rikken G L J A, Fölling J and Wyder P 2001 Phys. Rev. Lett. 87 236602
[12] Yoda T, Yokoyama T and Murakami S 2015 Sci. Rep. 5 12024
[13] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M and Nojima T 2016 Nat. Phys. 12 144
[14] Wang N, Kaplan D, Zhang Z, Holder T, Cao N, Wang A, Zhou X, Zhou F, Jiang Z and Zhang C 2023 Nature 621 487
[15] Wang Y, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A and Ando Y 2022 Phys. Rev. Lett. 128 176602
[16] Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S, Kaneko Y, Tokura Y, Nagaosa N and Iwasa Y 2017 Nat. Phys. 13 578
[17] Morimoto T and Nagaosa N 2016 Phys. Rev. Lett. 117 146603
[18] Yoshimi R, Kawamura M, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2022 Phys. Rev. B 106 115202
[19] Wu Y, Wang Q, Zhou X, Wang J, Dong P, He J, Ding Y, Teng B, Zhang Y, Li Y, Zhao C, Zhang H, Liu J, Qi Y, Watanabe K, Taniguchi T and Li J 2022 npj Quantum Mater. 7 105
[20] Daido A, Ikeda Y and Yanase Y 2022 Phys. Rev. Lett. 128 037001
[21] Wakatsuki R, Saito Y, Hoshino S, Itahashi Y M, Ideue T, Ezawa M, Iwasa Y and Nagaosa N 2017 Sci. Adv. 3 e1602390
[22] Itahashi Y M, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T and Iwasa Y 2020 Sci. Adv. 6 eaay9120
[23] Itahashi Y M, Saito Y, Ideue T, Nojima T and Iwasa Y 2020 Phys. Rev. Res. 2 023127
[24] Zhang E, Xu X, Zou Y C, Ai L, Dong X, Huang C, Leng P, Liu S, Zhang Y, Jia Z, Peng X, Zhao M, Yang Y, Li Z, Guo H, Haigh S J, Nagaosa N, Shen J and Xiu F 2020 Nat. Commun. 11 5634
[25] Ideue T, Koshikawa S, Namiki H, Sasagawa T and Iwasa Y 2020 Phys. Rev. Res. 2 042046
[26] Wakatsuki R and Nagaosa N 2018 Phys. Rev. Lett. 121 026601
[27] Remeika J P, Cooper A S, Fisk Z and Johnston D C 1978 J. LessCommon Met. 62 211
[28] Lv B, Li M, Chen J, Yang Y, Wu S, Qiao L, Guan F, Xing H, Tao Q, Cao G H and Xu Z A 2020 Phys. Rev. B 102 064507
[29] Yang H Y, Yao X, Plisson V, Mozaffari S, Scheifers J P, Savvidou A F, Choi E S, McCandless G T, Padlewski M F, Putzke C, Moll P J W, Chan J Y, Balicas L, Burch K S and Tafti F 2021 Nat. Commun. 12 5292
[30] Sato Y J, Nakamura A, Nishinakayama R, Okazaki R, Harima H and Aoki D 2023 Phys. Rev. B 108 235115
[31] Pop F, Auban-Senzier P, Canadell E, Rikken G L J A and Avarvari N 2014 Nat. Commun. 5 3757
[32] Rikken G L J A and Wyder P 2005 Phys. Rev. Lett. 94 016601
[33] Emmanouilidou E, Mardanya S, Xing J, Reddy P V S, Agarwal A, Chang T R and Ni N 2020 Phys. Rev. B 102 235144
[34] Du W S, Chen W, Zhou Y, Zhou T, Liu G, Zhang Z, Miao Z, Jia H, Liu S and Zhao Y 2023 arXiv: 2303.09052
[35] Wakamura T, Hashisaka M, Hoshino S, Bard M, Okazaki S, Sasagawa T, Taniguchi T, Watanabe K, Muraki K and Kumada N 2024 Phys. Rev. Res. 6 013132
[1] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[2] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[3] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[4] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[7] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[8] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[9] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[10] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[11] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[12] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[13] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
No Suggested Reading articles found!