CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy |
Yumin Xia(夏玉敏)1,2, Ni Ma(马妮)3,4, Desheng Cai(蔡德胜)1,2, Yuzhou Liu(刘宇舟)1,2, Yitong Gu(谷易通)1,2, Gan Yu(于淦)1,2, Siyu Huo(霍思宇)1,2, Wenhui Pang(庞文慧)1,2, Chong Xiao(肖翀)3,4,5, and Shengyong Qin(秦胜勇)1,2,6,† |
1 International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China; 2 CAS Key Laboratory of Strong Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 4 Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China; 5 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences (CAS), Dalian 116023, China; 6 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
Abstract Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity. A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials. Here, by using in situ scanning tunneling microscopy, we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu$_{4}$Se$_{3}$ for the first time. We clearly revealed each atomic layer, including the naturally cleaved K atomic layer, the intermediate Se$^{2-}$ atomic layer, and the Se$^{-}$ atomic layer that emerges in the thermodynamic-stable state. Departing from the majority of studies that predominantly concentrate on macroscopic measurements of the charge transport, our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium, which potentially influences charge carrier and lattice dynamics. These results provide direct insight into the surface microstructures and evolution of KCu$_{4}$Se$_{3}$, and shed useful light on designing functional materials with superior performance.
|
Received: 10 May 2024
Revised: 27 May 2024
Accepted manuscript online:
|
PACS:
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374196, 92165201, 11634011, and 22109153), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-046), the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006 and WK3430000003), the Fund of Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-008), and the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No. KY2060000241). |
Corresponding Authors:
Shengyong Qin
E-mail: syqin@ustc.edu.cn
|
Cite this article:
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇) Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy 2024 Chin. Phys. B 33 086804
|
[1] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [2] Tan G J, Shi F Y, Hao S Q, Zhao L D, Chi H, Zhang X M, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2016 Nat. Commun. 7 12167 [3] Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M and Jiang X 2018 Nat. Mater. 18 62 [4] Acharyya P, Roychowdhury S, Samanta M and Biswas K 2020 J. Am. Chem. Soc. 142 20502 [5] Slade T J, Pal K, Grovogui J A, Bailey T P, Male J, Khoury J F, Zhou X, Chung D Y, Snyder G J, Uher C, Dravid V P, Wolverton C and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 12524 [6] Zhou C, Yu Y, Lee Y L, Ge B, Lu W, Oana C M, Im J, Cho S P, Wuttig M, Shi Z and Chung I 2020 J. Am. Chem. Soc. 142 15172 [7] Ma N, Xiao C and Xie Y 2024 Acc. Mater. Res. 5 286 [8] Zhang J W, Song L R, Madsen G K H, Fischer K F F, Zhang W Q, Shi X and Iversen B B 2016 Nat. Commun. 7 10892 [9] Liu Y C, Wang W X, Yang J and Li S 2018 Adv. Sustain. Syst. 2 1800046 [10] Samanta M, Ghosh T, Chandra S and Biswas K 2020 J. Mater. Chem. A 8 12226 [11] Chung D Y, Hogan T, Brazis P, Melissa R L, Kannewurf C, Bastea M, Uher C and Kanatzidis M G 2000 Science 287 1024 [12] Li X Y, Bai W, Gao J Q, Li P J, Zhang R X, Xie K, Xia Y M, Shi H H, Xiao C, Xie Y and Qin S Y 2021 J. Phys. Chem. Lett. 12 5319 [13] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372 [14] Flores E, Ares J R, Castellanos-Gómez A, Barawi M, Ferrer I J and Sánchez C 2015 Appl. Phys. Lett. 106 022102 [15] Lv H Y, Lu W J, Shao D F and Sun Y P 2014 Phys. Rev. B 90 085433 [16] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [17] Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 315 141 [18] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 13713 [19] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778 [20] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422 [21] Bai H, Su X L, Yang D W, Zhang Q J, Tan G J, Uher C, Tang X F and Wu J S 2021 Adv. Funct. Mater. 31 2100431 [22] Qian K, Gao L, Chen X, Li H, Zhang S, Zhang X L, Zhu S, Yan J, Bao D, Cao L, Shi J A, Lu J, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S, Ouyang M, Pantelides S T and Gao H J 2020 Adv. Mater. 32 1908314 [23] Gulay L, Daszkiewicz M, Strok O and Pietraszko A 2011 Chem. Met. Alloys 4 200 [24] Folmer J C W and Jellinek F 1980 J. Less-Common Met. 76 153 [25] Stoll P, Näther C, Jeß I and Bensch W 1999 Acta Cryst. C55 286 [26] Klepp K, Boller H and Völlenkle H 1980 Monatshefte für Chemie/Chemical Monthly 111 727 [27] McKeever H, Patil N N, Palabathuni M and Singh S 2023 Chem. Mater. 35 9833 [28] Ma N, Jia F, Xiong L, Chen L, Li Y Y and Wu L M 2019 Inorg Chem. 58 1371 [29] Ma N, Li Y Y, Chen L and Wu L M 2020 J. Am. Chem. Soc. 142 5293 [30] Chen Y Y, Shen Y P, Li X Y, Sun J and Wang Q 2020 Adv. Theory Simul. 3 2000169 [31] Chen H J, Rodrigues J N B, Rettie A J E, Song T B, Chica D G, Su X L, Bao J K, Chung D Y, Kwok W K, Wagner L K and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 635 [32] Sturza M, Malliakas C D, Bugaris D E, Han F, Chung D Y and Kanatzidis M G 2014 Inorg. Chem. 53 12191 [33] Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L and Wu L M 2021 J. Am. Chem. Soc. 143 18490 [34] Horcas I, Fernandez R, Gómez-Rodriguez J M, Colchero J, GómezHerrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [35] Yin F, Akola J, Koskinen P, Manninen M and Palmer R E 2009 Phys. Rev. Lett. 102 106102 [36] Renard J, Lundeberg M B, Folk J A and Pennec Y 2011 Phys. Rev. Lett. 106 156101 [37] Zhou J J, Hellman O and Bernardi M 2018 Phys. Rev. Lett. 121 226603 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|