Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086804    DOI: 10.1088/1674-1056/ad50c4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy

Yumin Xia(夏玉敏)1,2, Ni Ma(马妮)3,4, Desheng Cai(蔡德胜)1,2, Yuzhou Liu(刘宇舟)1,2, Yitong Gu(谷易通)1,2, Gan Yu(于淦)1,2, Siyu Huo(霍思宇)1,2, Wenhui Pang(庞文慧)1,2, Chong Xiao(肖翀)3,4,5, and Shengyong Qin(秦胜勇)1,2,6,†
1 International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China;
2 CAS Key Laboratory of Strong Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
4 Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China;
5 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences (CAS), Dalian 116023, China;
6 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity. A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials. Here, by using in situ scanning tunneling microscopy, we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu$_{4}$Se$_{3}$ for the first time. We clearly revealed each atomic layer, including the naturally cleaved K atomic layer, the intermediate Se$^{2-}$ atomic layer, and the Se$^{-}$ atomic layer that emerges in the thermodynamic-stable state. Departing from the majority of studies that predominantly concentrate on macroscopic measurements of the charge transport, our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium, which potentially influences charge carrier and lattice dynamics. These results provide direct insight into the surface microstructures and evolution of KCu$_{4}$Se$_{3}$, and shed useful light on designing functional materials with superior performance.
Keywords:  thermoelectric      KCu$_{4}$Se$_{3}$      scanning tunneling microscopy(STM)      evolution  
Received:  10 May 2024      Revised:  27 May 2024      Accepted manuscript online: 
PACS:  68.60.Dv (Thermal stability; thermal effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374196, 92165201, 11634011, and 22109153), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-046), the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006 and WK3430000003), the Fund of Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-008), and the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No. KY2060000241).
Corresponding Authors:  Shengyong Qin     E-mail:  syqin@ustc.edu.cn

Cite this article: 

Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇) Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy 2024 Chin. Phys. B 33 086804

[1] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[2] Tan G J, Shi F Y, Hao S Q, Zhao L D, Chi H, Zhang X M, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2016 Nat. Commun. 7 12167
[3] Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M and Jiang X 2018 Nat. Mater. 18 62
[4] Acharyya P, Roychowdhury S, Samanta M and Biswas K 2020 J. Am. Chem. Soc. 142 20502
[5] Slade T J, Pal K, Grovogui J A, Bailey T P, Male J, Khoury J F, Zhou X, Chung D Y, Snyder G J, Uher C, Dravid V P, Wolverton C and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 12524
[6] Zhou C, Yu Y, Lee Y L, Ge B, Lu W, Oana C M, Im J, Cho S P, Wuttig M, Shi Z and Chung I 2020 J. Am. Chem. Soc. 142 15172
[7] Ma N, Xiao C and Xie Y 2024 Acc. Mater. Res. 5 286
[8] Zhang J W, Song L R, Madsen G K H, Fischer K F F, Zhang W Q, Shi X and Iversen B B 2016 Nat. Commun. 7 10892
[9] Liu Y C, Wang W X, Yang J and Li S 2018 Adv. Sustain. Syst. 2 1800046
[10] Samanta M, Ghosh T, Chandra S and Biswas K 2020 J. Mater. Chem. A 8 12226
[11] Chung D Y, Hogan T, Brazis P, Melissa R L, Kannewurf C, Bastea M, Uher C and Kanatzidis M G 2000 Science 287 1024
[12] Li X Y, Bai W, Gao J Q, Li P J, Zhang R X, Xie K, Xia Y M, Shi H H, Xiao C, Xie Y and Qin S Y 2021 J. Phys. Chem. Lett. 12 5319
[13] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[14] Flores E, Ares J R, Castellanos-Gómez A, Barawi M, Ferrer I J and Sánchez C 2015 Appl. Phys. Lett. 106 022102
[15] Lv H Y, Lu W J, Shao D F and Sun Y P 2014 Phys. Rev. B 90 085433
[16] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[17] Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 315 141
[18] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 13713
[19] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778
[20] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[21] Bai H, Su X L, Yang D W, Zhang Q J, Tan G J, Uher C, Tang X F and Wu J S 2021 Adv. Funct. Mater. 31 2100431
[22] Qian K, Gao L, Chen X, Li H, Zhang S, Zhang X L, Zhu S, Yan J, Bao D, Cao L, Shi J A, Lu J, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S, Ouyang M, Pantelides S T and Gao H J 2020 Adv. Mater. 32 1908314
[23] Gulay L, Daszkiewicz M, Strok O and Pietraszko A 2011 Chem. Met. Alloys 4 200
[24] Folmer J C W and Jellinek F 1980 J. Less-Common Met. 76 153
[25] Stoll P, Näther C, Jeß I and Bensch W 1999 Acta Cryst. C55 286
[26] Klepp K, Boller H and Völlenkle H 1980 Monatshefte für Chemie/Chemical Monthly 111 727
[27] McKeever H, Patil N N, Palabathuni M and Singh S 2023 Chem. Mater. 35 9833
[28] Ma N, Jia F, Xiong L, Chen L, Li Y Y and Wu L M 2019 Inorg Chem. 58 1371
[29] Ma N, Li Y Y, Chen L and Wu L M 2020 J. Am. Chem. Soc. 142 5293
[30] Chen Y Y, Shen Y P, Li X Y, Sun J and Wang Q 2020 Adv. Theory Simul. 3 2000169
[31] Chen H J, Rodrigues J N B, Rettie A J E, Song T B, Chica D G, Su X L, Bao J K, Chung D Y, Kwok W K, Wagner L K and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 635
[32] Sturza M, Malliakas C D, Bugaris D E, Han F, Chung D Y and Kanatzidis M G 2014 Inorg. Chem. 53 12191
[33] Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L and Wu L M 2021 J. Am. Chem. Soc. 143 18490
[34] Horcas I, Fernandez R, Gómez-Rodriguez J M, Colchero J, GómezHerrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[35] Yin F, Akola J, Koskinen P, Manninen M and Palmer R E 2009 Phys. Rev. Lett. 102 106102
[36] Renard J, Lundeberg M B, Folk J A and Pennec Y 2011 Phys. Rev. Lett. 106 156101
[37] Zhou J J, Hellman O and Bernardi M 2018 Phys. Rev. Lett. 121 226603
[1] Evolutionary dynamics of tax-based strong altruistic reward and punishment in a public goods game
Zhi-Hao Yang(杨智昊) and Yan-Long Yang(杨彦龙). Chin. Phys. B, 2024, 33(9): 090205.
[2] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[3] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[4] Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2024, 33(6): 060307.
[5] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[6] Evolutionary game dynamics of combining two different aspiration-driven update rules in structured populations
Zhi-Hao Yang(杨智昊) and Yan-Long Yang(杨彦龙). Chin. Phys. B, 2024, 33(5): 050203.
[7] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[8] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[9] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[10] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[11] Adaptive interaction driven by the learning effect in the spatial prisoner's dilemma
Jiaqi Li(李佳奇), Jianlei Zhang(张建磊), and Qun Liu(刘群). Chin. Phys. B, 2024, 33(3): 030202.
[12] Effect of TbF3 diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition
Xue-Jing Cao(曹学静), Shuai Guo(郭帅), Yu-Heng Xie(谢宇恒), Lei Jin(金磊), Guang-Fei Ding(丁广飞),Bo Zheng(郑波), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097503.
[13] Bio-inspired environmental adaptability of swarm active matter
Yangkai Jin(金阳凯), Gao Wang(王高), Daming Yuan(袁大明), Peilong Wang(王培龙), Jing Wang(王璟), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Xingjie Zan(昝兴杰). Chin. Phys. B, 2023, 32(8): 088703.
[14] Atomistic simulations of graphene origami: Dynamics and kinetics
Panpan Zhang(张盼盼), Haihong Jia(贾海洪), Yan-Fang Zhang(张艳芳), and Shixuan Du(杜世萱). Chin. Phys. B, 2023, 32(8): 087107.
[15] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
No Suggested Reading articles found!