Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117202    DOI: 10.1088/1674-1056/ac6493
Special Issue: TOPICAL REVIEW — Progress in thermoelectric materials and devices
SPECIAL TOPIC—Progress in thermoelectric materials and devices Prev   Next  

Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2

Xin Zhao(赵昕)1,†, Xuanwei Zhao(赵轩为)1,†, Liwei Lin(林黎蔚)1,‡, Ding Ren(任丁)1, Bo Liu(刘波)1, and Ran Ang(昂然)1,2,§
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Abstract  The misfit layer compound (SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However, the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here, we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range. It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons, indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K. In addition, we apply the single Kane band model and the Debye-Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound (SnS)1.2(TiS2)2.
Keywords:  misfit layer sulfide      electron delocalization      carrier mobility      chemical bond  
Received:  17 March 2022      Revised:  01 April 2022      Accepted manuscript online:  06 April 2022
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.61.Ga (II-VI semiconductors)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  74.25.F- (Transport properties)  
Fund: This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112).
Corresponding Authors:  Liwei Lin, Ran Ang     E-mail:;

Cite this article: 

Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然) Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2 2022 Chin. Phys. B 31 117202

[1] Gingerich D B and Mauter M S 2015 Sci. Technol. 49 8297
[2] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J and Ang R 2018 Chin. Phys. B 27 047202
[3] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
[4] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[5] Fu C G, Bai S Q, Liu Y T, Tang Y S, Chen L D, Zhao X B and Zhu T J 2015 Nat. Commun. 6 8144
[6] Li J, Zhang X Y, Wang X, Bu Z L, Zheng L T, Zhou B Q, Xiong F, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 16190
[7] Luo Z Z, Hao S Q, Zhang XM, Hua X, Cai ST, Tan G J, Bailey T P, Ma R C, Uher C, Wolverton C, Dravid V P, Yan Q Y and Kanatzidis M G 2018 Energy Environ. Sci. 11 3220
[8] Yang J W, Li G D, Zhu H T, Chen N, Lu T B, Gao J L, Guo L W, Xiang J S, Sun P J, Yao Y, Yang R G and Zhao H Z 2022 Joule 6 193
[9] Zhang X Y, Li J, Wang X, Chen Z W, Mao J J, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 15883
[10] Hong M, Lyu W Y, Wang Y, Zou J and Chen Z G 2020 J. Am. Chem. Soc. 142 2672
[11] Chen Z W, Ge B H, Li W, Lin S Q, Shen J W, Chang Y J, Hanus R, Snyder G J and Pei Y Z 2017 Nat. Commun. 8 13828
[12] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q and Zhao L D 2017 J. Am. Chem. Soc. 139 18732
[13] Luo Y B, Hao S Q, Cai S T, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q Y and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187
[14] Yao C J, ZhangH L and Zhang Q C 2019 Polymers 11 107
[15] Zhang Y C, Zhang Q C and Chen G M 2020 Carbon Energy 2 408
[16] Imasato K, Fu C G, Pan Y, Wood M, Kuo J J, Felser C and Snyder G J 2020 Adv. Mater. 32 1908218
[17] Shi X M, Zhao T T, Zhang X Y, Sun C, Chen Z W, Lin S Q, Li W, Gu H and Pei Y Z 2019 Adv. Mater. 31 1903387
[18] Luo T, Kuo J J, Griffith K J, Imasato K, Cojocaru-Miredin O, Wuttig M, Gault B, Yu Y and Snyder G J 2021 Adv. Funct. Mater. 31 2100258
[19] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778
[20] Zhao L D, Tan G J, Hao S Q, He J Q., Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[21] Liu Y, Calcabrini M, Yu Y, Lee S, Chang C, David J, Ghosh T, Spadaro M C, Xie C Y, Cojocaru-Miredin O, Arbiol J and Ibanez M 2021 ACS Nano 16 78
[22] Peng K L, Lu X, Zhan H, Hui S, Tang X D, Wang G W, Dai J Y, Uher C, Wang G Y and Zhou X Y 2016 Energy Environ. Sci. 9 454
[23] Hu Q, Yin C, Zhang L L, Lei L, Wang Z S, Chen Z Y, Tang J and Ang R 2018 Chin. Phys. B 27 017104
[24] Pei Y L and Liu Y 2012 J. Alloys Compd. 514 40
[25] Ramakrishnan A, Raman S, Chen L C and Chen K H 2017 J. Electron. Mater. 47 3091
[26] Yin C, Liu H T, Hu Q, Tang J, Pei Y Z and Ang R 2019 ACS Appl. Mater. Interfaces 11 48079
[27] Wang X Y, Yao H H, Zhang Z W, Li X F, Chen C, Yin L, Hu K N, Yan Y R, Li Z, Yu B, Cao F, Liu X J, Lin X and Zhang Q 2021 ACS Appl. Mater. Interfaces 13 18638
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Blochl P E 1994 Phys. Rev. B 50 17953
[30] Blochl, P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[31] Ji G Q, Han C Z, Hu S L, Fu P F, Chen X, Guo J G, Tang J and Xiao Z W 2021 J. Am. Chem. Soc. 143 10275
[32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[33] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (CRC Press)
[34] Poater J, Duran M, Sola M and Silvi B 2005 Chem. Rev. 105 3911
[35] Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W and Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033
[36] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[37] Toberer E S, Zevalkink A, Crisosto N and Snyder G J 2010 Adv. Funct. Mater. 20 4375
[38] Callaway J and von Baeyer H C 1960 Phys. Rev. 120 1149
[39] Dey T K and Chaudhuri K D 1976 J. Low Temp. Phys. 23 419
[40] Yang J, Meisner G P and Chen L 2004 Appl. Phys. Lett. 85 1140
[41] Zaitsev V, Tkalenko E and Nikitin E 1969 Sov. Phys. Solid State 11 3000
[42] Abeles B 1963 Phys. Rev. 131 1906
[43] Slack G A 1957 Phys. Rev. 105 829
[1] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[2] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[5] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[6] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[7] First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH2)2PbI3
Jun-Fei Wang(王俊斐), Xiao-Nan Fu(富笑男), Jun-Tao Wang(王俊涛). Chin. Phys. B, 2017, 26(10): 106301.
[8] Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides
Qing-Hua Zhang(张庆华), Dong-Dong Xiao(肖东东), Lin Gu(谷林). Chin. Phys. B, 2016, 25(6): 066803.
[9] First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3NH3SnI3
Li-Juan Wu(伍丽娟), Yu-Qing Zhao(赵宇清), Chang-Wen Chen(陈畅文), Ling-Zhi Wang(王琳芝), Biao Liu(刘标), Meng-Qiu Cai(蔡孟秋). Chin. Phys. B, 2016, 25(10): 107202.
[10] Effects of the ion-beam voltage on the properties of the diamond-like carbon thin film prepared by ion-beam sputtering deposition
Sun Peng (孙鹏), Hu Ming (胡明), Zhang Feng (张锋), Ji Yi-Qin (季一勤), Liu Hua-Song (刘华松), Liu Dan-Dan (刘丹丹), Leng Jian (冷健). Chin. Phys. B, 2015, 24(6): 067803.
[11] First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties of β-US2
Li Shi-Chang (李世长), Zheng Yuan-Lei (郑远蕾), Ma Sheng-Gui (马生贵), Gao Tao (高涛), Ao Bing-Yun (敖冰云). Chin. Phys. B, 2015, 24(12): 127101.
[12] Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires
Zhu Lin-Li (朱林利). Chin. Phys. B, 2015, 24(1): 016201.
[13] Ab initio study of the electronic structure and elastic properties of Al5C3N
Xu Xue-Wen(徐学文), Hu Long(胡龙), Yu Xiao(宇霄), Lu Zun-Ming(卢遵铭), Fan Ying(范英), frameLi Yang-Xian(李养贤), and Tang Cheng-Chun(唐成春) . Chin. Phys. B, 2011, 20(12): 126201.
[14] Effect of double AlN buffer layer on the qualities of GaN films grown by radio-frequency molecular beam epitaxy
Li Xin-Hua(李新化), Zhong Fei(钟飞), Qiu Kai(邱凯), Yin Zhi-Jun(尹志军), and Ji Chang-Jian(姬长建). Chin. Phys. B, 2008, 17(4): 1360-1363.
[15] Structural classification and a binary structure model for superconductors
Dong Cheng(董成). Chin. Phys. B, 2006, 15(12): 3005-3013.
No Suggested Reading articles found!