Special Issue:
TOPICAL REVIEW — Progress in thermoelectric materials and devices
|
SPECIAL TOPIC—Progress in thermoelectric materials and devices |
Prev
Next
|
|
|
Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2 |
Xin Zhao(赵昕)1,†, Xuanwei Zhao(赵轩为)1,†, Liwei Lin(林黎蔚)1,‡, Ding Ren(任丁)1, Bo Liu(刘波)1, and Ran Ang(昂然)1,2,§ |
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract The misfit layer compound (SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However, the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here, we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range. It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons, indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K. In addition, we apply the single Kane band model and the Debye-Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound (SnS)1.2(TiS2)2.
|
Received: 17 March 2022
Revised: 01 April 2022
Accepted manuscript online: 06 April 2022
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.61.Ga
|
(II-VI semiconductors)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112). |
Corresponding Authors:
Liwei Lin, Ran Ang
E-mail: linliwei@scu.edu.cn;rang@scu.edu.cn
|
Cite this article:
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然) Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2 2022 Chin. Phys. B 31 117202
|
[1] Gingerich D B and Mauter M S 2015 Sci. Technol. 49 8297 [2] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J and Ang R 2018 Chin. Phys. B 27 047202 [3] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66 [4] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 [5] Fu C G, Bai S Q, Liu Y T, Tang Y S, Chen L D, Zhao X B and Zhu T J 2015 Nat. Commun. 6 8144 [6] Li J, Zhang X Y, Wang X, Bu Z L, Zheng L T, Zhou B Q, Xiong F, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 16190 [7] Luo Z Z, Hao S Q, Zhang XM, Hua X, Cai ST, Tan G J, Bailey T P, Ma R C, Uher C, Wolverton C, Dravid V P, Yan Q Y and Kanatzidis M G 2018 Energy Environ. Sci. 11 3220 [8] Yang J W, Li G D, Zhu H T, Chen N, Lu T B, Gao J L, Guo L W, Xiang J S, Sun P J, Yao Y, Yang R G and Zhao H Z 2022 Joule 6 193 [9] Zhang X Y, Li J, Wang X, Chen Z W, Mao J J, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 15883 [10] Hong M, Lyu W Y, Wang Y, Zou J and Chen Z G 2020 J. Am. Chem. Soc. 142 2672 [11] Chen Z W, Ge B H, Li W, Lin S Q, Shen J W, Chang Y J, Hanus R, Snyder G J and Pei Y Z 2017 Nat. Commun. 8 13828 [12] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q and Zhao L D 2017 J. Am. Chem. Soc. 139 18732 [13] Luo Y B, Hao S Q, Cai S T, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q Y and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187 [14] Yao C J, ZhangH L and Zhang Q C 2019 Polymers 11 107 [15] Zhang Y C, Zhang Q C and Chen G M 2020 Carbon Energy 2 408 [16] Imasato K, Fu C G, Pan Y, Wood M, Kuo J J, Felser C and Snyder G J 2020 Adv. Mater. 32 1908218 [17] Shi X M, Zhao T T, Zhang X Y, Sun C, Chen Z W, Lin S Q, Li W, Gu H and Pei Y Z 2019 Adv. Mater. 31 1903387 [18] Luo T, Kuo J J, Griffith K J, Imasato K, Cojocaru-Miredin O, Wuttig M, Gault B, Yu Y and Snyder G J 2021 Adv. Funct. Mater. 31 2100258 [19] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778 [20] Zhao L D, Tan G J, Hao S Q, He J Q., Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 [21] Liu Y, Calcabrini M, Yu Y, Lee S, Chang C, David J, Ghosh T, Spadaro M C, Xie C Y, Cojocaru-Miredin O, Arbiol J and Ibanez M 2021 ACS Nano 16 78 [22] Peng K L, Lu X, Zhan H, Hui S, Tang X D, Wang G W, Dai J Y, Uher C, Wang G Y and Zhou X Y 2016 Energy Environ. Sci. 9 454 [23] Hu Q, Yin C, Zhang L L, Lei L, Wang Z S, Chen Z Y, Tang J and Ang R 2018 Chin. Phys. B 27 017104 [24] Pei Y L and Liu Y 2012 J. Alloys Compd. 514 40 [25] Ramakrishnan A, Raman S, Chen L C and Chen K H 2017 J. Electron. Mater. 47 3091 [26] Yin C, Liu H T, Hu Q, Tang J, Pei Y Z and Ang R 2019 ACS Appl. Mater. Interfaces 11 48079 [27] Wang X Y, Yao H H, Zhang Z W, Li X F, Chen C, Yin L, Hu K N, Yan Y R, Li Z, Yu B, Cao F, Liu X J, Lin X and Zhang Q 2021 ACS Appl. Mater. Interfaces 13 18638 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Blochl P E 1994 Phys. Rev. B 50 17953 [30] Blochl, P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223 [31] Ji G Q, Han C Z, Hu S L, Fu P F, Chen X, Guo J G, Tang J and Xiao Z W 2021 J. Am. Chem. Soc. 143 10275 [32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [33] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (CRC Press) [34] Poater J, Duran M, Sola M and Silvi B 2005 Chem. Rev. 105 3911 [35] Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W and Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033 [36] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205 [37] Toberer E S, Zevalkink A, Crisosto N and Snyder G J 2010 Adv. Funct. Mater. 20 4375 [38] Callaway J and von Baeyer H C 1960 Phys. Rev. 120 1149 [39] Dey T K and Chaudhuri K D 1976 J. Low Temp. Phys. 23 419 [40] Yang J, Meisner G P and Chen L 2004 Appl. Phys. Lett. 85 1140 [41] Zaitsev V, Tkalenko E and Nikitin E 1969 Sov. Phys. Solid State 11 3000 [42] Abeles B 1963 Phys. Rev. 131 1906 [43] Slack G A 1957 Phys. Rev. 105 829 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|