Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057201    DOI: 10.1088/1674-1056/ad2d57
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature

Xiaochen Sun(孙笑晨)1, Chenghao Xie(谢承昊)1, Sihan Chen(陈思汗)1, Jingwei Wan(万京伟)1,2, Gangjian Tan(谭刚健)1,†, and Xinfeng Tang(唐新峰)1,‡
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
2 International School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract  Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling. These two properties, however, hardly coexist in single phase materials except previously reported hexagonal Cr$_{1-x}$Te half metal where a relatively high magnetic entropy change $(-\Delta S_{\rm M})$ of $\sim 2.4 $ J$\cdot $kg$^{-1}\cdot$K$^{-1}$ @ 5 T and a moderate thermoelectric figure of merit (ZT) of $\sim 1.2\times 10^{-2}$ @ 300 K are simultaneously recorded. Herein we aim to increase the thermoelectric performance of Cr$_{1-x}$Te by compositing with semiconducting Ag$_{2}$Te. It is discovered that the in-situ synthesis of Cr$_{1-x}$Te/Ag$_{2}$Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition. Specifically, at elevated temperatures ($T > 800 $ K), Cr$_{1-x}$Te has a much lower deformation energy than Ag$_{2}$Te and tends to become more Cr-deficient by capturing Te from Ag$_{2}$Te. Therefore, Ag is insufficiently reacted and as a metal it deteriorates ZT. We then rationalize the synthesis of Cr$_{1-x}$Te/Ag$_{2}$Te composites by ex-situ mix of the pre-prepared Cr$_{1-x}$Te and Ag$_{2}$Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa. We show that by compositing with 7 mol% Ag$_{2}$Te, the Seebeck coefficient of Cr$_{1-x}$Te is largely increased while the lattice thermal conductivity is considerably reduced, leading to 72% improvement of ZT. By comparison, $-\Delta S_{\rm M}$ is only slightly reduced by 10% in the composite. Our work demonstrates the potential of Cr$_{1-x}$Te/Ag$_{2}$Te composites for thermoelectromagnetic cooling.
Keywords:  thermoelectromagnetic cooling      thermoelectric      magnetocaloric      composite      chromium telluride  
Received:  28 January 2024      Revised:  20 February 2024      Accepted manuscript online:  27 February 2024
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0704900) and the National Natural Science Foundation of China (Grant No. 52171221).
Corresponding Authors:  Gangjian Tan, Xinfeng Tang     E-mail:  gtan@whut.edu.cn;tangxf@whut.edu.cn

Cite this article: 

Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰) Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature 2024 Chin. Phys. B 33 057201

[1] Valant M 2012 Prog. Mater. Sci. 57 980
[2] Takeuchi I and Sandeman K 2015 Phys. Today 68 48
[3] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 048403
[4] Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W and Zhang Z 2022 Nat. Commun. 13 2293
[5] Li S, Fang X, Lyu T, Cheng J, Ao W, Zhang C, Liu F, Li J and Hu L 2022 Mater. Today Phys. 27 100764
[6] Mao J, Chen G and Ren Z 2021 Nat. Mater. 20 454
[7] Ding J, Zhao W, Jin W, Di C A and Zhu D 2021 Adv. Funct. Mater. 31 2010695
[8] Roychowdhury S, Ghosh T, Arora R, Samanta M, Xie L, Singh N K, Soni A, He J, Waghmare U V and Biswas K 2021 Science 371 722
[9] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[10] Enescu D and Virjoghe E O 2014 Renew. Sust. Energ. Rev. 38 903
[11] Zhao D and Tan G 2014 Appl. Therm. Eng. 66 15
[12] Liu Z, Hong T, Xu L, Wang S, Gao X, Chang C, Ding X, Xiao Y and Zhao L D 2023 Interdiscip. Mater. 2 161
[13] Guo H H, Yang T, Tao P and Zhang Z D 2013 Chin. Phys. B 23 017201
[14] Peng P P, Wang C, Li L W, Li S Y and Chen Y Q 2022 Chin. Phys. B 31 047307
[15] Liu H, Zhang X, Li W and Pei Y 2022 Chin. Phys. B 31 047401
[16] Zhao X, Zhao X, Lin L, Ren D, Liu B and Ang R 2022 Chin. Phys. B 31 117202
[17] Yang X, Wang C, Lu R, Shen Y, Zhao H, Li J, Li R, Zhang L, Chen H and Zhang T 2022 Nano Energy 101 107553
[18] Gschneidner J K and Pecharsky V 2008 Int. J. Refrig. 31 945
[19] Tishin A, Spichkin Y, Zverev V and Egolf P 2016 Int. J. Refrig. 68 177
[20] Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
[21] De Oliveira N and Von Ranke P J 2010 Phys. Rep. 489 89
[22] Tishin A 2007 J. Magn. Magn. Mater. 316 351
[23] Gottschall T, Skokov K P, Fries M, Taubel A, Radulov I, Scheibel F, Benke D, Riegg S and Gutfleisch O 2019 Adv. Energy Mater. 9 1901322
[24] Tang X, Sepehri-Amin H, Terada N, Martin-Cid A, Kurniawan I, Kobayashi S, Kotani Y, Takeya H, Lai J and Matsushita Y 2022 Nat. Commun. 13 1817
[25] Tegus O, Brück E, Buschow K and De Boer F 2002 Nature 415 150
[26] Yin Z, Wang J L, Wang J, Li J, Zhou H, Zhang C, Zhang H, Zhang J, Shen F and Hao J 2022 ACS Nano 16 14632
[27] Zhang J, Chen X, Wang M, Zhang Q, Shi W, Zhan X, Zhao M, Li Z, Zheng J and Zhang H 2023 Adv. Funct. Mater. 33 2306434
[28] Wang Y, Zhang X, Liu Y Q, Zhang J X and Yue M 2020 Chin. Phys. B 29 067201
[29] Edalatpour S, Desutter J and Francoeur M 2016 J. Quant. Spectrosc. Radiat. Transfer 178 14
[30] Sun F H, Ma S, Zhao W, Li C, Sang X, Wei P and Zhang Q 2021 Rep. Prog. Phys. 84 096501
[31] Yan W, Nie X, Ke S, Hu Y, Ai X, Zhu W, Zhao W and Zhang Q 2022 Adv. Funct. Mater. 32 2209739
[32] Xie H, Zhao L D and Kanatzidis M G 2024 Interdiscip. Mater. 3 5
[33] Uchida K I, Zhou W and Sakuraba Y 2021 Appl. Phys. Lett. 118 140504
[34] Edmund C S 1950 Rep. Prog. Phys. 13 83
[35] Ma Z, Wei J, Song P, Zhang M, Yang L, Ma J, Liu W, Yang F and Wang X 2021 Mater. Sci. Semicond. Process. 121 105303
[36] Tang X, Li Z, Liu W, Zhang Q and Uher C 2022 Interdiscip. Mater. 1 88
[37] Gong Y, Sun J, Hu W, Li S, Xu W, Tan G and Tang X 2022 Appl. Phys. Lett. 120 023905
[38] Gao Z, Chen J, Zhang Z, Liu Z, Zhang Y, Xu L, Wu J and Luo F 2023 Adv. Electron. Mater. 9 2200823
[39] Kanchana V, Vaitheeswaran G and Rajagopalan M 2002 J. Magn. Magn. Mater. 250 353
[40] Purwar S, Low A, Bose A, Narayan A and Thirupathaiah S 2023 Phys. Rev. Mater. 7 094204
[41] Hamad M K, Maswadeh Y, Martinez-Teran E, El-Gendy A and Ziq K A 2021 Eur. Phys. J. Plus 136 516
[42] Dijkstra J, Weitering H, Van Bruggen C, Haas C and De Groot R 1989 J. Phys.: Condens. Matter 1 9141
[43] Hong M, Chen Z G, Yang L and Zou J 2016 Nano Energy 20 144
[44] Wei T R, Qiu P, Zhao K, Shi X and Chen L 2023 Adv. Mater. 35 2110236
[45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Kresse G and Fürthmuller J 1996 Phys. Rev. B 54 11169
[47] Bez H N, Yibole H, Pathak A, Mudryk Y and Pecharsky V K 2018 J. Magn. Magn. Mater. 458 301
[48] Luo Z Z, Hao S, Cai S, Bailey T P, Tan G, Luo Y, Spanopoulos I, Uher C, Wolverton C and Dravid V P 2019 J. Am. Chem. Soc 141 6403
[49] Kobayashi M 1990 Solid State Ion. 39 121
[50] Xie W, He J, Zhu S, Su X, Wang S, Holgate T, Graff J, Ponnambalam V, Poon S and Tang X 2010 Acta Mater. 58 4705
[51] Bergman D J and Levy O 1991 J. Appl. Phys. 70 6821
[1] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[2] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[3] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[4] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[5] Research and application of composite stochastic resonance in enhancement detection
Rui Gao(高蕊), Shangbin Jiao(焦尚彬), and Qiongjie Xue(薛琼婕). Chin. Phys. B, 2024, 33(1): 010203.
[6] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[7] Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect
Rongrong Guo(郭蓉蓉), Deshuai Yu(余德帅), Yifan Huang(黄一帆), Sen Wang(王森), Cong Fu(付聪), Shuihong Zhu(朱水洪), Jia Yi(易佳), Hanqi Wang(王涵淇), and Youhui Lin(林友辉). Chin. Phys. B, 2023, 32(8): 088103.
[8] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[9] Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons
Yong-Bin Guo(郭永斌), Dao Wang(王岛), Zhong-Min Wang(王忠民), Lei Ma(马垒), and Zhen-Jie Zhao(赵振杰). Chin. Phys. B, 2023, 32(7): 070703.
[10] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[11] Oxidation behavior of Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2C–MxC (M = Ti, Zr, Hf, Nb, Ta) composite ceramic at high temperature
Shuai Xu(徐帅), Tao Wang(王韬), Xingang Wang(王新刚), Lu Wu(吴璐),Zhongqiang Fang(方忠强), Fangfang Ge(葛芳芳), Xuan Meng(蒙萱),Qing Liao(廖庆), Jinchun Wei(魏金春), and Bingsheng Li(李炳生). Chin. Phys. B, 2023, 32(6): 068102.
[12] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[13] Weak signal detection method based on novel composite multistable stochastic resonance
Shangbin Jiao(焦尚彬), Rui Gao(高蕊), Qiongjie Xue(薛琼婕), and Jiaqiang Shi(史佳强). Chin. Phys. B, 2023, 32(5): 050202.
[14] Thermoelectric generators and their applications: Progress, challenges, and future prospects
Nassima Radouane. Chin. Phys. B, 2023, 32(5): 057307.
[15] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
No Suggested Reading articles found!