Special Issue:
TOPICAL REVIEW — Progress in thermoelectric materials and devices
|
TOPICAL REVIEW—Progress in thermoelectric materials and devices |
Prev
Next
|
|
|
Module-level design and characterization of thermoelectric power generator |
Kang Zhu(朱康)1, Shengqiang Bai(柏胜强)3,4, Hee Seok Kim5,†, and Weishu Liu(刘玮书)1,2,‡ |
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China; 3 The State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Mechanical Engineering, School of Engineering&Technology, University of Washington Tacoma, Tacoma, WA 98402, USA |
|
|
Abstract Thermoelectric power generation provides us the unique capability to explore the deep space and holds promise for harvesting the waste heat and providing a battery-free power supply for IoTs. The past years have witnessed massive progress in thermoelectric materials, while the module-level development is still lagged behind. We would like to shine some light on the module-level design and characterization of thermoelectric power generators (TEGs). In the module-level design, we review material selection, thermal management, and the determination of structural parameters. We also look into the module-level characterization, with particular attention on the heat flux measurement. Finally, the challenge in the optimal design and reliable characterization of thermoelectric power generators is discussed, together with a calling to establish a standard test procedure.
|
Received: 23 June 2021
Revised: 29 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
85.80.Fi
|
(Thermoelectric devices)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: The work is supported by Shenzhen DRC project (Grant No.[2018]1433). |
Corresponding Authors:
Hee Seok Kim, Weishu Liu
E-mail: heeskim@uw.edu;liuws@sustech.edu.cn
|
Cite this article:
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书) Module-level design and characterization of thermoelectric power generator 2022 Chin. Phys. B 31 048502
|
[1] Zakrajsek J F, Woerner D F, Cairnsgallimore D, Johnson S G and Qualls L 2016 IEEE Aerospace Conference, March 05-12, 2016, Big Sky, MT, America, p. 1 [2] Salvador J R 2017 Technical Report, US Department of Energy 1414341 [3] Yang Y, Lin Z H, Hou T, Zhang F and Wang Z L 2012 Nano Research 5 888 [4] Ioffe A F 1957 Semiconductor Thermolements and Thermoelectric Cooling (London:Infosearch Limited) pp. 38-40 [5] Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L D, Fedorov M I, Muller E, Iversen B B and Snyder G J 2015 Energy Environ. Sci. 8 423 [6] Lalonde A D, Pei Y Z and Snyder G J 2011 Energy Environ. Sci. 4 2090 [7] Wang H, Bai S Q, Chen L D, Cuenat A, Joshi G, Kleinke H, König J, Lee H W, Martin J, Oh M W, Porter W D, Ren Z F, Salvador J, Sharp J, Taylor P, Thompson A J and Tseng Y C 2015 Journal of Electronic Materials 44 4482 [8] Chen Z W, Zhang X Y, Lin S Q, Chen L D and Pei Y Z 2018 National Science Review 5 888 [9] Wei T R, Guan M J, Yu, J J, Zhu T J, Chen L D and Shi X 2018 Joule 2 2183 [10] Ziabari A, Suhir E and Shakouri A 2014 Microelectronics Journal 45 547 [11] Kraemer D, Jie Q, Mcenaney K, Feng C, Liu W, Weinstein L A, Loomis J, Ren Z F and Chen G 2016 Nat. Energy 1 16153 [12] Liu W S, Lukas K C, McEnaney K, Lee S Y, Zhang Q, Opeil C P, Chen G and Ren Z F 2013 Energy Environ. Sci. 6 552 [13] Angrist S W 1982 Direct Energy Conversion (Boston:Allyn and Bacon Inc) p. 145 [14] Kim H S, Liu W S, Chen G, Chu C W and Ren Z F 2015 Proc. Natl. Acad. Sci. USA 112 8205 [15] Kim H S, Liu W S and Ren Z F 2017 Energy Environ. Sci. 10 69 [16] Xing Y F, Liu R H, Liao J C, Wang C, Zhang Q H, Song Q F, Xia X G, Zhu T J, Bai S Q and Chen L D 2020 Joule 4 1 [17] Landmann D, Tang Y L, Kunz B, Huber R, Widner D, Rickhaus P, Widmer R N, Elsener H R and Battaglia C 2019 J. Appl. Phys. 126 085113 [18] Zhu K, Deng B, Zhang P X, Kim H S, Jiang P and Liu W S 2020 Energy Environ. Sci. 13 3514 [19] Lv S, He W, Jiang Q, Hu Z, Liu X, Chen H and Liu M 2018 Energy Conversion and Management 156 167 [20] Khalil A, Elhassnaoui A, Yadir S, Abdellatif O, Errami Y and Sahnoun S 2021 Energy 224 119967 [21] Choo S, Ejaz F, Ju H, Kim F, Lee J, Yang S E, Kim G, Kim H, Jo S, Baek S, Cho S, Kim K, Kim J Y, Ahn S, Chae H G, Kwon B and Son J S 2021 Nat. Commun. 12 3550 [22] Kim C S, Yang H M, Lee J, Lee G S, Choi H, Kim Y J, Lim S H, Cho S H and Cho B J 2018 ACS Energy Lett. 3 501 [23] Crane D T and Bell L E 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 11 [24] Kim H S, Kikuchi K, Itoh T, Iida T and Taya M 2014 Materials Science and Engineering B 185 45 [25] Sakamoto T, Iida T, Ohno Y, Ishikawa M, Kogo Y, Hirayama N, Arai K, Nakamura T, Nishio K and Takanashi Y 2014 Journal of Electronic Materials 43 1620 [26] Min G 2005 Thermoelectric Module Design Theories, in Thermoelectrics, Handbook:Macro to Nano (BocaRaton, FL:CRC Press) p. 11 [27] Maduabuchi C, Njoku H, Eke M, Mgbemene C, Lamba R and Ibrahim J S 2021 Journal of Power Sources 500 229989 [28] He R, Schierning G and Nielsch K 2017 Advanced Materials Technologies 3 1700256 [29] Ji D X, Hu S W, Feng Y, Qin J, Yin Z J, Romagnoli A, Zhao J H and Qian H H 2021 Energy Conversion and Management 238 114158 [30] Guo M C, Zhu J B, Guo F K, Zhang Q, Cai W and Sui J H 2020 Materials Today Physics 15 100270 [31] Suarez F, Nozariasbmarz A, Vashaee D and Mehmet C Öztürk 2016 Energy Environ. Sci. 9 2099 [32] Mayer P M and Ram R J 2006 Nanoscale and Microscale Thermophysical Engineering 10 143 [33] Stevens J W 2001 Energy Conversion and Management 42 709 [34] Yazawa K and Shakouri A 2011 Environ. Sci. Technol. 45 7548 [35] Yazawa K and Shakouri A 2012 J. Appl. Phys. 111 024509 [36] Apertet Y, Ouerdane H, Glavatskaya O, Goupil C and Lecoeur P 2012 Europhys. Lett. 972 28001 [37] Apertet Y, Ouerdane H, Goupil C and Lecoeur P 2014 J. Appl. Phys. 11614 144901 [38] Lu X, Zhao D L, Ma T, Wang Q W, Fan J T and Yang R G 2018 Energy Conversion and Management 169 186 [39] Baranowski L L, Snyder G J and Toberer E S 2013 J. Appl. Phys. 113 204904 [40] Beretta D, Massetti M, Lanzani G and Caironi M 2017 Rev. Sci. Instrum. 88 015103 [41] Takazawa H, Obara H, Okada Y, Kobayashi K, Onishi T and Kajikawa T 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 189 [42] Ying P J, He R, Mao J, Zhang Q H, Reith H, Sui J H, Ren Z F, Nielsch K and Schierning G 2021 Nat. Commun. 12 1121 [43] Müller E, Bruch J U and Schilz J 1998 17th International Conference on Thermoelectrics, May 24-28, 1998, Nagoya, Japan, p. 441 [44] Warzoha R J and Donovan B F 2017 Rev. Sci. Instrum. 88 094901 [45] Manno M, Yang B and Bar-Cohen A 2015 Rev. Sci. Instrum. 86 084701 [46] Montecucco A, Buckle J, Siviter J and Knox A R 2013 Journal of Electronic Materials 42 1966 [47] Rauscher L, Fujimoto S, Kaibe H T and Sano S 2005 Measurement Science and Technology 16 1054 [48] Kraemer D, Sui J, Mcenaney K, Zhao H, Jie Q, Ren Z F and Chen G 2015 Energy Environ. Sci. 8 1299 [49] He H, Liu W, Wu Y, Rong M, Zhao P and Tang X 2019 Energy Conversion and Management 180 584 [50] Muto A, Kraemer D, Hao Q, Ren Z F and Chen G 2009 Rev. Sci. Instrum. 80 093901 [51] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaey K, Chiesa M, Ren Z F and Chen G 2011 Nat. Mater. 10 532 [52] Xu C, Liang Z, Shang H, Wang D, Wang H, Ding F, Mao J and Ren Z F 2021 Materials Today Physics 17 100336 [53] Bu Z, Zhang X, Shan B, Tang J, Liu H, Chen Z, Lin S, Li W and Pei Y 2021 Sci. Adv. 7 eabf2738 [54] http://www.ulvac.com/components/Thermal-Instruments/Thermoelectric-Testers/PEM-2 [55] Ohta M, Jood P, Murata M, Lee C H, Yamamoto A and Obara H 2019 Adv. Energy Mater. 9 1801304 [56] Zhang Q H, Liao J C, Tang Y S, Gu M, Chen M, Qiu P F, Bai S Q, Shi X, Uher C and Chen L D 2017 Energy Environ. Sci. 10 956 [57] Ebling D G, Krumm A, Pfeiffelmann B, Gottschald J, Bruchmann J, Benim A C, Adam M, Labs R, Herbertz R R and Stunz A 2016 Journal of Electronic Materials 45 3433 [58] Harman T C 1958 J. Appl. Phys. 29 1373 [59] Chavez R, Becker A, Bartel M, Kessler V, Schierning G and Schmechel R 2013 Rev. Sci. Instrum. 84 106106 [60] Kraemer D and Chen G 2014 Rev. Sci. Instrum. 854 045107 [61] Yoo C Y, Kim Y, Hwang J, Yoon H, Cho B J, Min G and Park S H 2018 Energy 152 834 [62] Lv S, Ji Y, Qian Z, Pan Y, Zhang Y and He W 2021 Applied Thermal Engineering 190 116753 [63] Yu C and Chau K T 2009 Energy Conversion and Management 50 1506 [64] Montecucco A, Siviter J and Knox A R 2012 IEEE Energy Conversion Congress and Exposition, September 15-20, 2012, Raleigh, NC, p. 2777 [65] Phillip N, Maganga O, Burnham K J, Ellis M A, Robinson S, Dunn J and Rouaud C 2013 Journal of Electronic Materials 42 1900 [66] Harish S, Sivaprahasam D, Jayachandran B, Gopalan R and Sundararajan G 2021 Energy Conversion and Management 232 113900 [67] Arai K, Romanjek K, Nishikawa K, Nishimoto S, Komasaki M, Nagatomo Y and Kuromitsu Y 2021 Engineering Failure Analysis 120 105088 [68] Liu Z H, Sato N, Gao W H, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C H, Yi J, Tsuchiya K and Mori T 2021 Joule 5 1196 [69] Mengali O J and Seiler M R 1962 Advanced Energy Conversion 2 59 [70] Liu W S, Wang H Z, Wang L J, Wang X W, Joshi G, Chen G and Ren Z F 2013 Journal of Materials Chemistry A 1 13093 [71] Liu W S and Bai S Q 2019 Journal of Materiomics 5 321 [72] Kim D H, Kim C, Kim J T, Yoon D K and Kim H 2018 Measurement 129 281 [73] Gupta R P, Mccarty R, Bierschenk J and Sharp J 2013 MRS Proceedings 1490 153 [74] Kim Y, Yoon G and Park S H 2016 Experimental Mechanics 56 861 [75] Chen M 2011 Rev. Sci. Instrum. 82 116109 [76] Annapragada S R, Salamon T, Kolodner P, Hodes M and Garimella S V 2012 IEEE Transactions on Components, Packaging and Manufacturing Technology 2 668 [77] Beltrán-Pitarch B, Vidan F and Garcia-Canadas J 2021 International Journal of Heat and Mass Transfer 173 121247 [78] Hu X K, Liu X X, Guo Z T and Zhu L M 2021 Rev. Sci. Instrum. 92 025110 [79] Schuler R, Madathil R K and Norby T 2021 Rev. Sci. Instrum. 92 043902 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|