Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048401    DOI: 10.1088/1674-1056/acb768

Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency

Jingyuan Lu(陆静远)1,2,†, Chunfeng Cui(崔春凤)1,2,†, Tao Ouyang(欧阳滔)1,2,‡, Jin Li(李金)1,2, Chaoyu He(何朝宇)1,2, Chao Tang(唐超)1,2,§, and Jianxin Zhong(钟建新)1,2
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, China
Abstract  The gamma-graphyne nanoribbons ($\gamma $-GYNRs) incorporating diamond-shaped segment (DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green's functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates (only 2.88% of all 16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency. The room temperature thermoelectric figure of merit ($ZT$) of the optimal $\gamma $-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine $\gamma $-GYNR (length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal $\gamma $-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance (proactive effect) and reduction of thermal power factor (side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of $\gamma $-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials.
Keywords:  adaptive genetic algorithm      thermoelectric material      diamond-like quantum dots      gamma-graphyne nanoribbon  
Received:  06 December 2022      Revised:  04 January 2023      Accepted manuscript online:  31 January 2023
PACS:  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974300, 11974299, and 12074150), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30645), Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 20K127, 20A503, and 20B582), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13093), the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20220544), Youth Science and Technology Talent Project of Hunan Province, China (Grant No. 2022RC1197).
Corresponding Authors:  Tao Ouyang, Chao Tang     E-mail:;

Cite this article: 

Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新) Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency 2023 Chin. Phys. B 32 048401

[1] Zhu T J, Zhao L D and Fu C U 2020 Annalen Der Physik 532 2000435
[2] He J and Tritt T M 2017 Science 357 6358
[3] Zhang W, Zhang X Q, Liu L, Wang Z Q and Li Z G 2021 Chin. Phys. B 30 77405
[4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[5] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[6] Xu Y, Xu X, Zhang W, Ouyang T and Tang C 2019 Acta Phys. Sin. 68 247202 (in Chinese)
[7] Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A and Majumdar A 2006 Phys. Rev. Lett. 96 045901
[8] Kim W, Lee W, Lee S M, Kim D and Park J 2022 Nanotechnology 33 175702
[9] Broido and Reinecke 1995 Phys. Rev. B 51 13797
[10] Maleki F, Ovens K, Najafian K, Forghani B, Reinhold C and Forghani R 2020 Neuroimaging Clinics of North America 30 E17
[11] Li Y N, Wu P, Zhang S P, Pei Y L, Yang J G, Chen S and Wang L 2022 Chin. Phys. B 31 47203
[12] Cao Z, Fu Q Q, Gu H, Tian Z, Yaer X, Xing J J, Miao L, Wang X H, Liu H M and Wang J 2021 Chin. Phys. B 30 97204
[13] Seko A, Togo A, Hayashi H, Tsuda K, Chaput L and Tanaka I 2015 Phys. Rev. Lett. 115 205901
[14] Yao T S, Tang C Y, Yang M, Zhu K J, Yan D Y, Yi C J, Feng Z L, Lei H C, Li C H, Wang L, Wang L, Shi Y G, Sun Y J and Ding H 2019 Chin. Phys. Lett. 36 068101
[15] Noé F, Olsson S, Köhler J and Wu H 2019 Science 365 6457
[16] Wei H, Bao H and Ruan X L 2020 Nano Energy 71 104619
[17] Sun H N, Ge Y, Liu W and Liu Z C 2019 Energy 171 37
[18] Che Z G, Chiang T A and Che Z H 2011 International Journal of Innovative Computing Information and Control 7 5839
[19] Djurisi A B, Elazar J M and Raki A D 1997 Appl. Opt. 36 7097
[20] Cao R F, Pei X, Zheng H Q, Hu L Q and Wu Y C 2014 Chinese Medical Journal 127 4152
[21] Katoch S, Chauhan S S and Kumar V 2021 Multimedia Tools and Applications 80 8091
[22] Wang Z L, Adachi Y and Chen Z C 2020 Advanced Theory and Simulations 3 1900197
[23] Xiong R, Sa B, Miao N, Li Y L, Zhou J, Pan Y, Wen C, Wu B and Sun Z 2017 RSC Advances 7 8936
[24] Arabha S and Rajabpour A 2020 Materials Today Commun. 22 100706
[25] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J and Zhu D B 2010 Chem. Commun. 46 3256
[26] Li C, Li J B, Wu F M, Li S S, Xia J B and Wang L W 2011 Journal of Physical Chemistry C 115 23221
[27] Kang J, Li J, Wu F, Li S S and Xia J B 2011 Journal of Physical Chemistry C 115 20466
[28] Pan L D, Zhang L Z, Song B Q, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 173102
[29] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[30] Zhang Y Y, Pei Q X and Wang C M 2012 Comput. Mater. Sci. 65 406
[31] Liu R, Gao X, Zhou J Y, Xu H, Li Z Z, Zhang S Q, Xie Z Q, Zhang J and Liu Z F 2017 Adv. Mater. 29 1604665
[32] Yang C F, Li Y, Chen Y, Li Q D, Wu L L and Cui X L 2019 Small 15 1804710
[33] Sevincli H and Sevik C 2014 Appl. Phys. Lett. 105 223108
[34] Zhang Y Y, Pei Q X, Hu M and Zong Z 2015 RSC Advances 5 65221
[35] Long M Q, Tang L, Wang D, Li Y L and Shuai Z G 2011 ACS Nano 5 2593
[36] Jiang P H, Liu H J, Cheng L, Fan D D, Zhang J, Wei J, Liang J H and Shi J 2017 Carbon 113 108
[37] Chen B, Li X Q, Xue L, Han Y, Yang Z and Zhang L L 2021 Chin. Phys. B 30 57101
[38] Cranford S W and Buehler M J 2011 Carbon 49 4111
[39] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[40] Hou X, Xie Z J, Li C M, Li G N and Chen Z Q 2018 Materials 11 188
[41] Jazzbin E A 2020
[42] Jong D and Kenneth 1980 IEEE Transactions on Systems, Man, and Cybernetics 10 566
[43] Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, Wentzcovitch R M and Ho K M 2014 J. Phys.: Condens. Matter 26 035402
[44] Zhan L J, Fang Y M, Zhang R T, Lu X C, Lu T Y, Cao X R, Zhu Z Z and Wu S Q 2022 Phys. Chem. Chem. Phys. 24 15201
[45] Ouyang T and Hu M 2014 Nanotechnology 25 245401
[46] Gale J D 2005 Zeitschrift für Kristallographie - Crystalline Materials 220 552 DOI:
[47] Gale and D J 1997 J. Chem. Soc. 93 629
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[5] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[6] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[7] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[8] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[9] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[10] Synthesis, physical properties, and annealing investigation of new layered Bi-chalcogenide LaOBiHgS3
Yi Yu(于一), Chunchang Wang(汪春昌), Liang Li(李亮), Qiuju Li(李秋菊), Chao Cheng(程超), Shuting Wang(王舒婷), Changjin Zhang(张昌锦). Chin. Phys. B, 2019, 28(1): 017401.
[11] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[12] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[13] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[14] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[15] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
No Suggested Reading articles found!