Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027105    DOI: 10.1088/1674-1056/adf17d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles insights into NaMgPO3S oxysulfide solid electrolyte

Jian Sun(孙健)1,2, Shaohui Ding(丁少辉)2, Daquan Yang(杨大全)2,†, Kan Zhang(张侃)1, and Huican Mao(毛慧灿)1,‡
1 Department of Materials Science, Key Laboratory of Automobile Materials, MOE and International Center of Future Science, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Information Photonics and Optical Communications, and School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The development of high-performance solid electrolytes is pivotal for advancing solid-state battery technologies. In this work, we design an oxysulfide-based solid electrolyte NaMgPO$_{3}$S by combining bond valence theory and density functional theory calculations. The material features a wide band gap of 4.0 eV and a considerable reduced Na$^{+}$ migration barrier of 0.44 eV, a 1.26-eV decrease compared to pristine NaMgPO$_{4}$ ($\sim 1.70$ eV). Ab initio molecular dynamics simulations further reveal significantly enhanced ionic conductivity in the oxysulfide-based system compared to the pristine oxide structure. In addition, the calculated decomposition energy indicates that the modified material exhibits good moisture stability. Our findings suggest that sulfur-doping strategy can simultaneously achieve improved ionic conductivity and high moisture stability in oxide solid electrolytes, which could pave the way for designing high-performance solid electrolytes.
Keywords:  solid electrolytes      first-principles calculations      element doping  
Received:  13 April 2025      Revised:  01 July 2025      Accepted manuscript online:  18 July 2025
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  74.20.Pq (Electronic structure calculations)  
  31.15.A- (Ab initio calculations)  
  31.15.xw (Valence bond calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 22473010, 22303114, and 12474372), the Fundamental Research Funds for the Central Universities, Jilin University, the National Key Research and Development Program of China (Grant No. SQ2023YFB2805600), the Natural Science Foundation of Beijing Municipality (Grant No. Z210004), the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2021ZT01), Beijing Nova Program from Beijing Municipal Science and Technology Commission (Grant No. 20230484433), Beijing University of Posts and Telecommunications Excellent Ph.D. Students Foundation (Grant No. CX20241078), and Beijing Natural Science Foundation (Undergraduate Program) (Grant No. QY24218). We gratefully acknowledge HZWTECH for providing computation facilities.
Corresponding Authors:  Daquan Yang, Huican Mao     E-mail:  ydq@bupt.edu.cn;hcmao@jlu.edu.cn

Cite this article: 

Jian Sun(孙健), Shaohui Ding(丁少辉), Daquan Yang(杨大全), Kan Zhang(张侃), and Huican Mao(毛慧灿) First-principles insights into NaMgPO3S oxysulfide solid electrolyte 2026 Chin. Phys. B 35 027105

[1] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[2] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[3] Goodenough J B and Kim Y 2010 Chem. Mater 22 587
[4] Lin D, Liu Y and Cui Y 2017 Nat. Nanotechnol. 12 194
[5] Bates A M, Preger Y, Torres-Castro L, Harrison K L, Harris S J and Hewson J 2022 Joule 6 742
[6] Yu X, Chen R, Gan L, Li H and Chen L 2023 Engineering 21 9
[7] Gao J, Zhao Y S, Shi S Q and Li H 2015 Chin. Phys. B 25 018211
[8] Lu Z Y, Chen L T, Hu X, Chen S Y, Zhang X and Zhou Z 2024 Chin. Phys. Lett. 41 058201
[9] Ma J Y, Huang Y L, Zhou H J, Wang Y Y, Li J G, Yu X Q, Li H and Li Y 2024 Chin. Phys. Lett. 41 078202
[10] He B, Mi P H, Ye A J, Chi S T, Jiao Y, Zhang L W, Pu B W, Zou Z Y, Zhang W Q and Avdeev M 2021 Acta Mater. 203 116490
[11] Shi W, He B, Pu B W, Ren Y, Avdeev M and Shi S Q 2022 J. Phys. Chem. A. 126 5222
[12] Ren Y, Zou Z Y, Zhao Q, Wang D, Yu J and Shi S Q 2020 Acta Phys. Sin. 69 226601 (in Chinese)
[13] Shi S q, Lu P, Liu Z Y, Qi Y, Hector J L G, Li H and Harris S J 2012 J. Am. Chem. Soc. 134 15476
[14] Zhao Q, Pan L, Li Y J, Chen L Q and Shi S Q 2018 Rare Met. 37 497
[15] Lin S, Lin Y X, He B, Pu B W, Ren Y, Wang G X, Luo Y Q and Shi S Q 2022 Adv. Energy Mater. 12 2201808
[16] Wang X Y, He B, Liu B, Avdeev M and Shi S Q 2024 Adv. Funct. Mater. 34 2406146
[17] Manthiram A, Yu X and Wang S 2017 Nat. Mater. Rev. 2 16103
[18] Kim J J, Yoon K, Park I and Kang K 2017 Small Methods 1 1700219
[19] Chen S, Hu X, Nie L, Yu Y and LiuW2023 Sci. China Mater. 66 2192
[20] Li S, Wang S, Du G, Liang J, Tong Z, Cui Y, Lin J, Xu X, Liu X, Zhai T and Li H 2025 Sci. China Mater. 68 199
[21] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Akio M 2011 Nat. Mater. 10 682
[22] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[23] Janek J and Zeier W G 2016 Nat. Energy 1 1
[24] Wang X, Xiao R, Li H and Chen L 2017 Phys. Rev. Lett. 118 195901
[25] Banerjee S, Zhang X and Wang L W 2019 Chem. Mater. 31 7265
[26] Kuo D H, Lo R, Hsueh T H, Jan D J and Su C H 2019 J. Power Sources 429 89
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[32] Xiao R, Li H and Chen L 2015 Sci. Rep. 5 14227
[33] Adams S and Rao R P 2011 Phys. Status Solidi A 208 1746
[34] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[35] Shuichi N 1991 Prog. Theor. Phys. Suppl. 103 1
[36] He X, Zhu Yi, Epstein A and Mo Y 2018 npj Comput. Mater. 4 18
[37] Pallikara I, Kayastha P, Skelton J M and Whalley L D 2022 Electronic Structure 4 033002
[38] Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S H and Ceder G 2017 Energy Environ. Sci. 10 1150
[1] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[2] Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice
Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉). Chin. Phys. B, 2026, 35(2): 027102.
[3] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强) and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[4] First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys
Mengdie Wang(王梦蝶), Chao Zhang(张超), Xinyue Lan(兰新月), Biao Hu(胡标), and Xuebang Wu(吴学邦). Chin. Phys. B, 2026, 35(1): 016102.
[5] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[6] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[7] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[8] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[9] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[10] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[11] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[12] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), and Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
[13] Stable structures and superconductivity of Ca-As-H system under high pressure
Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣). Chin. Phys. B, 2025, 34(11): 117401.
[14] Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K
Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(11): 117105.
[15] Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability
Zhi-Long Cao(曹智龙), Chen Cao(曹琛), Jia-Jun Xu(徐佳俊), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). Chin. Phys. B, 2025, 34(11): 117305.
No Suggested Reading articles found!