Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057202    DOI: 10.1088/1674-1056/ad34c5
Special Issue: TOPICAL REVIEW — Heat conduction and its related interdisciplinary areas
TOPICAL REVIEW—Heat conduction and its related interdisciplinary areas Prev   Next  

High-entropy alloys in thermoelectric application: A selective review

Kai Ren(任凯)1,†, Wenyi Huo(霍文燚)2,†, Shuai Chen(陈帅)3, Yuan Cheng(程渊)4,5,‡, Biao Wang(王彪)6,§, and Gang Zhang(张刚)7,¶
1 Zhengzhou University Advanced Medical Research Center, Luoyang Central Hospital, Luoyang 471099, China;
2 School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;
3 Materials Genome Institute, Shanghai University, Shanghai 200444, China;
4 Monash Suzhou Research Institute, Monash University, Suzhou 215000, China;
5 Department of Materials Science and Engineering, Monash University, Clayton VIC 3800, Australia;
6 Research Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China;
7 Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
Abstract  Since the superior mechanical, chemical and physical properties of high-entropy alloys (HEAs) were discovered, they have gradually become new emerging candidates for renewable energy applications. This review presents the novel applications of HEAs in thermoelectric energy conversion. Firstly, the basic concepts and structural properties of HEAs are introduced. Then, we discuss a number of promising thermoelectric materials based on HEAs. Finally, the conclusion and outlook are presented. This article presents an advanced understanding of the thermoelectric properties of HEAs, which provides new opportunities for promoting their applications in renewable energy.
Keywords:  high-entropy alloys      thermoelectric materials      thermal conduction  
Received:  12 November 2023      Revised:  04 March 2024      Accepted manuscript online:  18 March 2024
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
  61.66.Dk (Alloys )  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20220407 and BK20220428).
Corresponding Authors:  Yuan Cheng, Biao Wang, Gang Zhang     E-mail:  yuan.cheng@monash.edu;wangbiao@mail.sysu.edu.cn

Cite this article: 

Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚) High-entropy alloys in thermoelectric application: A selective review 2024 Chin. Phys. B 33 057202

[1] Baddoo N 2008 J. Constr. Steel Res. 64 1199
[2] Jr Starke E A and Staley J T 1996 Prog. Aerosp. Sci. 32 131
[3] Ezugwu E, Wang Z and Machado A 1999 J. Mater. Process. Technol. 86 1
[4] Gray J and Luan B 2002 J. Alloys Compd. 336 88
[5] Wu Z and Curtin W A 2015 Nature 526 62
[6] Bellouard Y 2008 Mater. Sci. Eng. A 481 582
[7] Wang D Y, Wei C Y, Lin M C, Pan C J, Chou H L, Chen H A, Gong M, Wu W, Yuan C, Angell M, Hsieh Y, Chen Y, Wen C, Chen C, Hwang B, Chen C and Dai H 2017 Nat. Commun. 8 14283
[8] Li X, Lu L, Li J, Zhang X and Gao H 2020 Nat. Rev. Mater. 5 706
[9] Yang Y, Chen T, Tan L, Poplawsky J D, An K, Wang Y, Samolyuk G D, Littrell K, Lipini A R, Borisevich A and George E P 2021 Nature 595 245
[10] Chen X, Wang Q, Cheng Z, Zhu M, Zhou H, Jiang P, Zhou Q, Xue Q, Yuan F, Zhu J, Wu X and Ma E 2021 Nature 592 712
[11] Peng S, Wei Y and Gao H 2020 Proc. Natl. Acad. Sci. USA 117 5204
[12] Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q and Bauer E 2019 Nature 576 85
[13] Yin B, Yoshida S, Tsuji N and Curtin W A 2020 Nat. Commun. 11 2507
[14] George E P, Raabe D and Ritchie R O 2019 Nat. Rev. Mater. 4 515
[15] Al Zoubi W, Putri R A K, Abukhadra M R and Ko Y G 2023 Nano Energy 110 108362
[16] Liu X, Zhang J and Pei Z 2023 Prog. Mater. Sci. 131 101018
[17] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375 213
[18] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299
[19] Pickering E J and Jones N G 2016 Int. Mater. Rev. 61 183
[20] George E P, Curtin W A and Tasan C C 2020 Acta Mater. 188 435
[21] Zhou Y J, Zhang Y, Wang Y L and Chen G L 2007 Appl. Phys. Lett. 90 181904
[22] Zou Y, Ma H and Spolenak R 2015 Nat. Commun. 6 7748
[23] Niu C, LaRosa C R, Miao J, Mills M J and Ghazisaeidi M 2018 Nat. Commun. 9 1363
[24] Liang Y J, Wang L, Wen Y, Cheng B, Wu Q, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C and Cai H N 2018 Nat. Commun. 9 4063
[25] Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M R, Li J X, Zhang Z, Zhu T, Ritchie R O and Yu Q 2019 Nature 574 223
[26] Zou Y, Wheeler J M, Ma H, Okle P and Spolenak R 2017 Nano Lett. 17 1569
[27] Ren K, Chen J, Wang H and Huang Z 2021 J. Phys. Conf. Ser. 2044 012051
[28] Li Q, Zhang T W, Qiao J W, Ma S G, Zhao D, Lu P and Wang Z H 2020 J. Alloys Compd. 816
[29] Li D, Li C, Feng T, Zhang Y, Sha G, Lewandowski J J, Liaw P R and Zhang Y 2017 Acta Mater. 123 285
[30] Wang S, Wu M, Shu D, Zhu G, Wang D and Sun B 2020 Acta Mater. 201 517
[31] Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A and Liaw P K 2012 Acta Mater. 60 5723
[32] Wu J M, Lin S J, Yeh J W, Chen S K, Huang Y S and Chen H C 2006 Wear 261 513
[33] Liu C, Peng W, Jiang C S, Guo H, Tao J, Deng X and Chen Z 2019 J. Mater. Sci. Technol. 35 1175
[34] Chang X, Zeng M, Liu K and Fu L 2020 Adv. Mater. 32 1907226
[35] Tang Y, Wang R, Xiao B, Zhang Z, Li S, Qiao J, Bai S, Zhang Y and Liaw P K 2023 Prog. Mater. Sci. 135 101090
[36] Tsai M H 2013 Entropy 15 5338
[37] Borkar T, Chaudhary V, Gwalani B, Choudhuri D, Mikler C V, Soni V, Aalm T, Ramanujan R V and Banerjee R 2017 Adv. Eng. Mater. 19 1700048
[38] Lucas M S, Mauger L, Muñoz J A, Xiao Y, Sheets A O, Semiatin S L, Horwath J and Turgut Z 2011 J. Appl. Phys. 109 07E307
[39] Kao Y, Chen S, Chen T, Chu P, Yeh J and Lin S 2011 J. Alloys Compd. 509 1607
[40] Zhang Y, Xu P, Zhu J, Yan S, Zhang J and Li L 2023 Mater. Today Phys. 32 101031
[41] Braic V, Balaceanu M, Braic M, Vladescu A, Panseri S and Russo A 2012 J. Mech. Behav. Biomed. Mater. 10 197
[42] Kong K, Hyun J, Kim Y, Kim W and Kim D 2019 J. Power Sources 437 226927
[43] Yan X and Zhang Y 2020 Scr. Mater. 187 188
[44] Cheng Y, Wu X, Zhang Z, Sun Y, Zhao Y, Zhang Y and Zhang G 2021 Nanoscale 13 1425
[45] Ren K, Wang K, Cheng Y, Tang W and Zhang G 2020 Nano Futures 4 032006
[46] Chang J, Wang G, Li C, He Y, Zhu Y, Zhang W, Sajid M, Kara A, Gu M and Yang Y 2023 Joule 7 587
[47] Zhang D, Shi Y, Zhao H, Qi W, Chen X, Zhan T, Li S, Yang B, Sun M, Lai J, Huang B and Wang L 2021 J. Mater. Chem. A 9 889
[48] Li H, Han Y, Zhao H, Qi W, Zhang D, Yu Y, Cai W, Li S, Lai J, Huang B and Wang L 2020 Nat. Commun. 11 5437
[49] Chen Z J, Zhang T, Gao X Y, Huang Y J, Qin X H, Wang Y F, Zhao K, Peng X, Zhang C, Liu L, Zeng M and Yu H 2021 Adv. Mater. 33 2101845
[50] Jin Z, Lv J, Jia H, Liu W, Li H, Chen Z, Lin X, Xie G, Liu X, Sun S and Qiu H J 2019 Small 15 1904180
[51] Zhang G and Li B 2010 Nanoscale 2 1058
[52] Zhang G and Zhang Y 2017 J. Mater. Chem. C 5 7684
[53] Luo J, You L, Zhang J, Guo K, Zhu H, Gu L, Yang Z, Li X, Yang J and Zhang W 2017 ACS Appl. Mater. Interfaces 9 8729
[54] Xie W, Tang X, Yan Y, Zhang Q and Tritt T M 2009 J. Appl. Phys. 105 113713
[55] Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X and Bauer E 2019 Nature 576 85
[56] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375 213
[57] Yeh J, Chen S, Lin S, Gan J, Chin T, Shun T, Tsau C and Chang S 2004 Adv. Eng. Mater. 6 299
[58] Zhang Y, Zuo T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2013 Prog. Mater. Sci. 61 1
[59] Yeh J 2013 J. Met. 65 1759
[60] Li Z, Zhao S, Ritchie R O and Meyers M A 2019 Prog. Mater. Sci. 102 296
[61] Cantor B 2021 Prog. Mater. Sci. 120 100754
[62] Li W, Xie D, Li D, Zhang Y, Gao Y and Liaw P K 2021 Prog. Mater. Sci. 118 100777
[63] Zhang Y, Zhou Y, Lin J, Chen G and Liaw P K 2008 Adv. Eng. Mater. 10 534
[64] Senkov O N, Wilks G B, Scott J M and Miracle D B 2011 Intermetallics 19 698
[65] Huo W, Fang F, Zhou H, Xie Z, Shang J and Jiang J 2017 Scr. Mater. 141 125
[66] Li Z, Pradeep K G, Deng Y, Raabe D and Tasan C C 2016 Nature 534 227
[67] Wang X, Guo W and Fu Y 2021 J. Mater. Chem. A 9 663
[68] Tsai K Y T M and Yeh J W 2013 Acta Mater. 61 4887
[69] Tsai M, Yeh J and Gan J 2008 Thin Solid Films 516 5527
[70] Huo W, Wang S, Zhu W, Zhang Z, Fang F, Xie Z and Jiang J 2021 Tungsten 3 161
[71] Tsai M 2013 Entropy 15 5338
[72] Huo W, Liu X, Tan S, Fang F, Xie Z, Wang S and Jiang J 2021 Appl. Surf. Sci. 439 222
[73] Ranganathan S 2003 Curr. Sci. 85 1404
[74] Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Gu L, Wei F, Bei H, Gao Y, Wen M, Li J, Zhang Z, Zhu T, Ritchie R and Yu Q 2019 Nature 574 223
[75] Yeh J 2006 Ann. Chim. Sci. Mater. 31 633
[76] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science 345 1153
[77] Takeuchi A, Amiya K, Wada T, Yubuta K and Zhang W 2014 J. Met. 66 1984
[78] Wang L, Zhang F, Nie Z, Wang L, Wang F, Wang B, Zhou S, Xue Y, Cheng B, Lou H, Chen X, Ren Y, Brown D E, Prakapenka V, Greenberg E, Zeng Z and Zeng Q 2019 Mater. Today Phys. 8 1
[79] Otto F, Yang Y, Bei H and George E P 2013 Acta Mater. 61 2628
[80] Liang Y, Wang L, Wen Y, Cheng B, Wu Q, Cao T, Xiao Q, Xue Y, Sha G, Wang Y, Ren Y, Li X, Wang L, Wng F and Cai H 2018 Nat. Commun. 9 4063
[81] Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, Gault B, Ponge D, Raabe D, Hirata A, Chen M W, Wang Y D and Lu Z P 2017 Nature 544 460
[82] Xie C X, Li W, Zheng D H, Wang K W, Yang Y Z, Shen F H, Xie L, Liao Z L and Zhong S Y 2019 J. Non-Cryst. Solids 514 20
[83] Huo J T, Huo L S, Men H, Wang X M, Inoue A, Wang J Q, Chang C T and Li R W 2015 Intermetallics 58 31
[84] Li C Z, Li Q, Li M C, Chang C T, Li H X, Dong Y Q and Sun Y F 2019 J. Alloys Compd. 791 947
[85] Wu W, Ni S, Liu Y, Liu B and Song M 2017 Mater. Charact. 127 111
[86] Li R, Gao J C and Fan K 2011 Mater. Sci. Forum 686 235
[87] Takeuchi A, Amiya K and Yubuta K 2018 Mater. Chem. Phys. 210 245
[88] Mao J, Chen G and Ren Z 2021 Nat. Mater. 20 454
[89] Zhang G, Zhang Q, Bui C, Lo G and Li B 2009 Appl. Phys. Lett. 94 213108
[90] Chen K, Li W, Duan W, Shuai Z and Gu B 2005 Phys. Rev. B 72 045422
[91] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211
[92] Ouyang Y, Zhang Z, Li D, Chen J and Zhang G 2019 Ann. Phys. 531 1800437
[93] Zhang G and Zhang Y 2013 Phys. Status Solidi 7 754
[94] Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S and Jia B 2021 Science 371 830
[95] Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M and He J 2022 Science 377 208
[96] Xie G, Shen Y, Wei X, Yang L, Xiao H, Zhong J and Zhang G 2014 Sci. Rep. 4 5058
[97] Liu R, Chen H, Zhao K, Qin Y, Jiang B, Zhang T, Sha G, Shi X, Uher C and Zhang W 2017 Adv. Mater. 29 1702712
[98] Yang J, Meisner G and Chen L 2004 Appl. Phys. Lett. 85 1140
[99] Meisner G, Morelli D, Hu S, Yang J and Uher C 1998 Phys. Rev. Lett. 80 3551
[100] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T and Ohishi Y 2012 Adv. Mater. 24 3622
[101] Sun M, Chou J, Shi L, Gao J, Hu A, Tang W and Zhang G 2018 ACS Omega 3 5971
[102] Wei P C, Liao C N, Wu H J, Yang D, He J, Biesold-McGee G V, Liang S, Yen W T, Tang X and Yeh J W 2020 Adv. Mater. 32 1906457
[103] Körmann F, Ikeda Y, Grabowski B and Sluiter M 2017 NPJ Comput. Mater. 3 36
[104] Chen S and Ren Z 2013 Mater. Today 16 387
[105] Shafeie S, Guo S, Hu Q, Fahlquist H, Erhart P and Palmqvist A 2015 J. Appl. Phys. 118 184905
[106] Karati A, Nagini M, Ghosh S, Shabadi R, Pradeep K, Mallik R C, Murty B and Varadaraju U 2019 Sci. Rep. 9 5331
[107] Karati A, Hariharan V, Ghosh S, Prasad A, Nagini M, Guruvidyathri K, Mallik R C, Shabadi R, Bichler L and Murty B 2020 Scr. Mater. 186 375
[108] Shi X, Zou J and Chen Z 2020 Chem. Rev. 120 7399
[109] Li J, Tan Q, Li J F, et al. 2013 Adv. Funct. Mater. 23 4317
[110] Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, Tang X and Uher C 2015 Adv. Energy Mater. 5 1401391
[111] Yu C, Zhang G, Zhang Y and Peng L 2015 Nano Energy 17 104
[112] Fan Z, Wang H, Wu Y, Liu X and Lu Z 2016 RSC Adv. 6 52164
[113] Yan X, Poudel B, Ma Y, Liu W, Joshi G, Wang H, Lan Y, Wang D, Chen G and Ren Z 2010 Nano Lett. 10 3373
[114] Ivanov O, Yaprintsev M, Vasil’ev A and Yaprintseva E 2021 J. Alloys Compd. 872 159743
[115] Yamashita A, Goto Y, Miura A, Moriyoshi C, Kuroiwa Y and Mizuguchi Y 2021 Mater. Res. Lett. 9 366
[116] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[117] Zhan S, Zheng L, Xiao Y and Zhao L 2020 Chem. Mater. 32 10348
[118] Fan Z, Wang H, Wu Y, Liu X and Lu Z 2017 Mater. Res. Lett. 5 187
[119] Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187
[120] Hu L, Zhang Y, Wu H, Li J, Li Y, Mckenna M, He J, Liu F, Pennycook S J and Zeng X 2018 Adv. Energy Mater. 8 1802116
[121] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[122] Wang X, Yao H, Zhang Z, Li X, Chen C, Yin L, Hu K, Yan Y, Li Z and Yu B 2021 ACS Appl. Mater. Interfaces 13 18638
[123] Liang J, Cheng L, Zhang J, Liu H and Zhang Z 2016 Nanoscale 8 8855
[124] Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y and Felser C 2022 Nat. Mater. 21 203
[125] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[126] Ahmad A, Zhu B, Wang Z, Gui Z, Wang W, Wang T, Yu Y, Huang L and He J 2024 Energy Environ. Sci. 17 695
[127] Min Y, Roh J W, Yang H, Park M, Kim S I, Hwang S, Lee S M, Lee K H and Jeong U 2013 Adv. Mater. 25 1424
[128] Shahil K, Hossain M, Goyal V and Balandin A 2012 J. Appl. Phys. 111 054305
[129] Alegria L, Schroer M, Chatterjee A, Poirier G, Pretko M, Patel S and Petta J 2012 Nano Lett. 12 4711
[130] Pan Y, Fan F R, Hong X, He B, Le C, Schnelle W, He Y, Imasato K, Borrmann H and Hess C 2021 Adv. Mater. 33 2003168
[131] Yang T, Yang Y, Wang X, Zhang G and Cheng Z 2023 Mater. Today Chem. 30 101488
[132] Ma Y J, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T and Breitung B 2021 Energy Environ. Sci. 14 2883
[133] Li R, Xie L, Wang W, Liaw P and Zhang Y 2020 Front. Mater. 7 290
[1] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[2] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[3] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽) and Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[8] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[9] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[10] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[11] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[12] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[13] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[14] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[15] Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization
Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(6): 060201.
No Suggested Reading articles found!