CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers |
Nan Lu(陆楠) and Jie Guan(管杰)† |
School of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract We study the thermal and electronic transport properties as well as the thermoelectric (TE) performance of three two-dimensional (2D) XI2 (X=Ge, Sn, Pb) bilayers using density functional theory and Boltzmann transport theory. We compared the lattice thermal conductivity, electrical conductivity, Seebeck coefficient, and dimensionless figure of merit (ZT) for the XI2 monolayers and bilayers. Our results show that the lattice thermal conductivity at room temperature for the bilayers is as low as ~1.1 W·m-1·K-1-1.7 W·m-1·K-1, which is about 1.6 times as large as the monolayers for all the three materials. Electronic structure calculations show that all the XI2 bilayers are indirect-gap semiconductors with the band gap values between 1.84 eV and 1.96 eV at PBE level, which is similar as the corresponding monolayers. The calculated results of ZT show that the bilayer structures display much less direction-dependent TE efficiency and have much larger n-type ZT values compared with the monolayers. The dramatic difference between the monolayer and bilayer indicates that the inter-layer interaction plays an important role in the TE performance of XI2, which provides the tunability on their TE characteristics.
|
Received: 14 September 2021
Revised: 16 November 2021
Accepted manuscript online: 31 December 2021
|
PACS:
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the Fundamental Research Fund for the Central Universities and the Zhongying Young Scholar Program of Southeast University. We thank the Big Data Computing Center of Southeast University for providing facility support for performing calculations presented in this manuscript. |
Corresponding Authors:
Jie Guan
E-mail: guanjie@seu.edu.cn
|
Cite this article:
Nan Lu(陆楠) and Jie Guan(管杰) Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers 2022 Chin. Phys. B 31 047201
|
[1] Snyder G and Toberer E 2008 Nat. Mater. 7 105 [2] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 [3] Hicks L D, Harman T C, Sun X and Dresselhaus M S 1996 Phys. Rev. B 53 R10493 [4] Lu P and Qu L 2013 Chin. Phys. Lett. 30 017101 [5] Melnyk G, Bauer E, Rogl P, Skolozdra R and Seidl E 2000 J. Alloys Compd. 296 235 [6] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884 [7] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 [8] Li G, Yao K and Gao G 2017 Nanotechnology 29 015204 [9] Lv H Y, Lu W J, Shao D F, Lu H Y and Sun Y P 2016 J. Mater. Chem. C 4 4538 [10] T Hung N, Nugraha A R T, Yang T, Zhang Z and Saito R 2019 J. Appl. Phys. 125 082502 [11] Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y and Ge B 2016 Adv. Electron. Mater. 2 1600019 [12] Lin C, Lydia R, Yun J H, Lee H S and Rhyee J S 2017 Chem. Mater. 29 5344 [13] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 [14] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631 [15] Hong J and Delaire O 1993 Mater. Today Phys. 10 100093 [16] Dong B, Wang Z, Hung N T, Oganov A R, Yang T, Saito R and Zhang Z 2019 Phys. Rev. Mater. 3 013405 [17] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J and Pei Y 2018 Joule 2 976 [18] Wang Q, Quhe R, Guan Z, Wu L, Bi J, Guan P, Lei M and Lu P 2018 RSC Adv. 8 21280 [19] Huang H H, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 10652 [20] Lv H Y, Lu W J, Shao D F and Sun Y P 2014 Phys. Rev. B 90 085433 [21] Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G and Cuniberti G 2016 J. Phys. Chem. C 120 18841 [22] Wickramaratne D, Zahid F and Lake R K 2014 J. Appl. Phys. 140 124710 [23] Huang W, Da H and Liang G 2013 J. Appl. Phys. 113 104304 [24] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201 [25] Peng B, Mei H, Zhang H, Shao H, Xu K, Ni G, Jin Q, Soukoulis C M and Zhu H 2019 Inorg. Chem. Front. 6 920 [26] Hu Y F, Yang J, Yuan Y Q and Wang J W 2020 Philos. Mag. 100 782 [27] Betal A, Bera J and Sahu S 2021 Comput. Mater. Sci. 186 109977 [28] Shulenburger L, Baczewski A D, Zhu Z, Guan J and Tomanek D 2015 Nano Lett. 15 8170 [29] Fugallo G, Lazzeri M, Paulatto L and Mauri F 2013 Phys. Rev. B 88 045430 [30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [31] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [32] Baroni S, Gironcoli S de, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [33] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [34] Madsen G K, Carrete J and Verstraete M J 2018 Comput. Phys. Commun. 231 140 [35] Peng H, Kioussis N and Snyder J 2014 Phys. Rev. B 89 195206 [36] Venkatasubramanian, R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597 [37] Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y and Zhang Z 2017 Phys. Rev. Lett. 119 106101 [38] Naseri M, Hoat D M, Salehi K and Amirian S 2020 J. Mol. Graph. 95 107501 [39] Zólyomi V, Drummond N D and Fal'ko V I 2014 Phys. Rev. B 89 205416 [40] Zhang J, Xie Y, Hu Y and Shao H 2020 Appl. Surf. Sci. 532 147387 [41] Ran R, Cheng C, Zeng Z Y, Chen X R and Chen Q F 2019 Philos. Mag. 99 1277 [42] Cröll A, Tonn J, Post E, Böttner H and Danilewsky A N 2017 J. Cryst. Growth 466 16 [43] Lin D, Guo B, Dai Z, Lin C and Hsu H 2019 Crystals 9 589 [44] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Jiang P H and Shi J 2017 Sci. Rep. 7 4623 [45] Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R and Zhu H 2016 Phys. Rev. B 94 245420 [46] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M and Su G 2015 Phys. Chem. Chem. Phys. 17 4854 [47] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 Sci. Rep. 6 20225 [48] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103 [49] Klemens P G 1955 Proc. Phys. Soc. A 68 1113 [50] Zhao Y, Dai, Z, Lian C, Zeng S, Li G, Ni J and Meng S 2017 Phys. Rev. Mater. 1 065401 [51] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G 2011 Nature 473 66 [52] DiSalvo F J 1999 Science 285 703 [53] Sofo J O and Mahan G D 1994 Phys. Rev. B 49 4565 [54] Bardeen J and Shockley W 1950 Phys. Rev. 80 72 [55] Mi X, Yu X, Yao K, Huang X, Yang N and Lü J 2015 Nano Lett. 15 5229 [56] Ding Z, An M, Mo S, Yu X, Jin Z, Liao Y, Esfarjani K, Lü J, Shiomi J and Yang N 2019 J. Mater. Chem. A 7 2114 [57] Bruzzone S and Fiori G 2011 Appl. Phys. Lett. 99 222108 [58] Shafique A, Samad A and Shin Y H 2017 Phys. Chem. Chem. Phys. 19 20677 [59] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602 [60] Yuan Q, Zheng F, Shi Z, Li Q, Lv Y, Chen Y, Zhang P and Li S 2021 Adv. Sci. 8 2100009 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|